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ABSTRACT 

 

Since the available laser is not such to probe the bare nucleus because the wavelength 

of available laser is much larger than the size of nucleus. As we shine laser on hydrogen atom or 

hydrogen-like ions, electron starts oscillating near the nucleus. Due to the oscillations of electron 

the nucleus experiences periodic electric field which is actually the source of AC Nuclear Stark 

effect. We will calculate analytically the Stark shift in the energy levels of Hydrogen atom nucleus 

under the action of super-intense laser. 
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ALLAH gifted moral sense to human being which is the ever best thing that we are blessed. 

Other than human being all the other creature are deprived of such beautiful property. The world 

in which we are living is full of ambiguous and when man observes these things near it, his 

curiosity urges him to explore the nature. So he started to think over the nature from his birth and 

his research takes him to the discovery of so many things. And these inventions have improved 

our living standard very much. This is what the greatest ALLAH wants us to do that explore the 

nature and work for the benefit of human being. Research work in science is also an attempt to 

serve the humanity in benefitting manner.  

To meet the energy crises over the whole world one must need to study the matter very deeply. 

There are so many scientists in the world which are working on different substances to produce 

energy from them. Study of atom mean the study of its properties and this work also a kind of 

study of the properties of H-atom. Hydrogen atom is one of the simplest element among all the 

elements which have been discovered yet in the nature. The branch of physics which deals with 

the study of atom and its constituents is Atomic and Nuclear physics in which we use Quantum 

Mechanics as a basic tool. Using Quantum Mechanics we can discuss the motion of tiny particles 

like electron, proton and neutron and also their interactions with the energy. One can think of 

light-atom interaction, when an atom is placed in external energy source say light, its energy will 

definitely be changed. According to Bohr model, for any bound state of an atom there exists 

definite energy levels and these levels will be shifted by little amount when the system is placed 

in external electric or magnetic field. For example if we place H-atom in a laser field, the energy 

shift in atomic energy level is observed this effect is known as Stark effect. As ground state 

nucleus of an atom is also a bound state so it also possesses definite energy levels. This idea is 

based on experimental facts and on different nuclear models. So we will see that there is also an 

Chapter 1 
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energy shift in the levels of nucleus with the help of laser. This phenomenon is termed as 

Nuclear Stark effect by an intense laser field.  

When we shine intense laser on hydrogen atom, its electron starts oscillating near the nucleus in 

the electric field of laser with a particular frequency 𝜔௢. The electron oscillations can completely 

be controlled by the laser parameters that is frequency 𝜔 and the strength E. 

When an electron oscillates under laser, nucleus feels the periodic electric field provided by the 

electron due to its oscillating motion. As nucleus experiences such sinusoidal field its energy 

levels split up. 

In this thesis Chapter 2 consists of discussion on all possible effects when a laser interacts with 

the atom. In laser atom interaction, multiple phenomena other than Stark effect are completely 

described in this chapter.  

In chapter 3 linear and quadratic Stark effects at atomic level are discussed, also we develop a 

complete mathematical formulism for AC Stark effect which may help us to study the Nuclear 

Stark effect.  

In Chapter 4 we discuss about nucleus especially its energy levels. There are different nuclear 

models which confirms that nucleus has specific energy levels. This idea is also supported by the 

experimental facts. 

In Chapter 5 we thoroughly develop a formula which will be helpful for us to calculate of energy 

shift in H-atom nucleus when it interacts with the laser of different strength and different 

frequency. 
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Laser is a electromagnetic radiation which is very important thing to investigate the dynamics of 

tiny particles. When we fall laser upon an atom, its energy makes significant change in the 

properties of that atom such that shift in the atomic levels, various phenomena may occur which 

are given below in succession. 

2.1 Atomic Excitation  
By excitation we mean that when we supply a specific amount of energy to a system, as a result 

electron in atom captivates that quantity of energy and jumps from lower energy level to higher 

energy level, we can say that atom has got excited. In laser atom interaction, we add energy to 

the system by laser source. Laser photons are monochromatic and coherent, when they are 

incident on an atom then its electron jumps to one of the higher energy states by absorbing laser 

photons, this process is called atomic excitation. The particular extent of energy required to 

excite an electron is known as excitation energy.  

As we see there exists finite probability of excitation of hydrogen atom when we shine intense 

attosecond laser on it [1]. Figure 2.1 shows atomic excitation, electron leaves its ground state by 

absorbing multiple photons from laser to excite the atom.  

 

 

  

Chapter 2 

Laser Atom Interaction 
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Figure 2.1: Excitation of an atom by laser 

 

There are two conditions for atomic excitation with laser; 

1. Energy of the photons taking part in excitation must be less than the ionization energy of the 

system.  

2. ∆E = nћω, where “nћω” is the energy of the laser carrier photons. And “∆E” is the energy 

difference between ground state and one of the excited states of the system. 

Below than ionization energy, if ∆E ≠ nћω the electron will not captivate laser energy and atom 
will not be get excited. Once an atom is excited, it de-excites to its initial state along with the 
emission of photons.  

   

2.2 Multiphoton Ionization (MPI) 
The process in which an atom gets charged either by gaining or losing electrons to make 

respective ions is termed as ionization.  To add or remove electron from atom or molecule, in 

both cases we need specific amount of energy. The minimum amount of energy needed to add or 

remove an electron from its outermost shell is known as ionization energy.    

Multiphoton ionization will occur if nћω > Ip, where nћω is the net energy absorbed by 

electron and Ip is the ionization energy. 

https://en.wikipedia.org/wiki/Atom
https://en.wikipedia.org/wiki/Electron
https://en.wikipedia.org/wiki/Ion
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 Initially it was believed that the photon of energy less than the ionization energy of targeted 

atom cannot release the electron from its bound state. Few years later after the invention of laser, 

it was observed that the phenomenon such as ionization can be occurred in the presence of large 

number of coherent and monochromatic photons. No doubt it contradicts the Einstein 

explanation of photoelectric effect but at that time there was no concept of laser.  

How many photons the system will absorbs from incident laser? It totally depends upon intensity 

of the laser field, more the intensity more will be the absorption and hence greater the 

probability of ionization. In other words we can say that probability to capture number of 

photons totally depends upon the number of photons per unit time incident on the system. Upon 

the absorption of greater number of photons causes to decrease the ionizing time of the system. 

As the system absorbs photon its life time is given by the Heisenberg uncertainty principle. 

∆𝐸. ∆𝑡 ≥ ℏ (2.1) 

Where ∆E is the uncertainty in energy after the absorption of photons, actually in between the 

initial and final states, there are infinite number of virtual states which exist for very short time 

∆t within oscillating field of laser. 

By successive absorption of photons, going through virtual states electron leaves its bound state 

hence system gets ionized. Schematic diagram of multiphoton ionization is shown in figure 2.2. 
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 Figure 2.2: Multiphoton Ionization 
 
 

We can calculate the kinetic energy of the electron separates the system by following formula. 

𝐾. 𝐸 = 𝑛ℏ𝜔 − 𝐼௣ (2.2) 

where Ip is the ionization energy of the system and n is the number of absorbed photons. 

Multiphoton ionization in Xe has been observed firstly in 1987 with 100-fs laser pulses of 

intensity 1.7x1014 Wcm-2 by the absorption of seven photons [2]. 

We observe multiphoton ionization in metals mostly, where electron absorbs multiple photons to 

make the system ionized. If I is the intensity of laser and σn is the cross sectional area with the 

absorption of n number of photons, then ionization rate can be calculated by following formula: 

ᴦ௡ = 𝐼. 𝜎௡ (2.3) 

 

2.3 Above Threshold Ionization (ATI) 
A very similar phenomenon like multiphoton ionization is the Above Threshold Ionization in 

which electron absorbs few more photons than the number of photons essential for MPI. The 

total energy absorbed by an electron from laser can be written as 

𝐸 = (𝑛 + 𝑘)ℏ𝜔 (2.4) 

Where n is the number of photons required for ionization and k is the additional number of 

photons which are the source of kinetic energy of the ionized electron. Here the energy of 

single photon is less than energy required for ionization so it is again a multiphoton 

process. Diagram 2.3 shows such process.  

ATI process has been observed in Xe in 1987 with laser pulses having wavelength 616 nm [3].  
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Figure 2.3: Above Threshold Ionization 
 

We can increase or decrease the energy of electron by laser parameters as shown by 

following formula. 

𝐸 =
2𝑒ଶԐଶ(𝑡)

𝑚𝜔ଶ  
(2.5) 

So electron will absorb greater number of photons by increasing the intensity and 

decreasing the frequency of incident laser field. 

   

2.4 Tunneling Ionization (TI) 
Tunneling Ionization is very important quantum mechanical phenomenon which can be observed 

in laser atom interaction. In such situation electron does not gain sufficient energy to compete the 

Coulomb barrier. Under the action of sinusoidal electric field of laser, the wings of Coulomb 

potential are suppressed so there is finite probability of electron to tunnel through the potential 

barrier as shown in figure 2.4.  
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 The phenomenon of high harmonic generation (HHG) is carried out through tunneling 

ionization. As potential barrier is distorted with the help of laser so width decreases and height of 

the barrier increases which increases the tunneling probability. 

The tunneling probability is decided by the quantity known as Keldysh parameter [4], which is 

given by 

𝛾 =
𝜏
𝑡
 (2.6) 

where τ is the time required for tunneling and t is the laser time. For γ<1, which we mean 

tunneling time is less than laser time i.e. electron gets enough time to tunnel in the presence of 

laser, hence  tunneling dominates. For γ>1, ATI dominates where laser does not provide enough 

time to tunnel out. Keldysh parameter can also be defined as 

𝛾 = (
𝐼௣

2𝑈௣
)ଵ/ଶ 

(2.7) 

where Ip is ionization potential and 𝑈௣ = ௘మԐమ(௧)
ସ௠ఠమ  the ponderomotive energy of electron, which is 

defined as the average energy gained by electron in laser field. Keldysh showed that TI and MPI 

are the limiting cases of ionization [5]. Tunneling ionization in noble gasses has been studied in 

1989 with the help of 1-μm, 1-ps laser pulses of intensity 1016 W/cm2 [6]. 

 

Figure 2.4: Tunneling Ionization 
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 2.5 Over the Barrier Ionization (OBI) 
As we have learnt already the Coulomb potential barrier can be distorted by the laser, so we may 

sufficiently increase the laser intensity so that height of the barrier faced by the electron becomes 

zero and then electron can easily escape walking over the barrier, this process is termed as over 

the barrier ionization. Schematic diagram for OBI is shown in figure 2.5. In such process all of 

the laser energy is utilized to distort the potential barrier so electron feels free to leave the 

system.  

 

Figure 2.5:  Over the barrier Ionization 

 

2.6 High Harmonic Generation (HHG) 
In HHG, photons of high energy are produced when an atom is exposed to laser beam, the 

harmonics obtained are the integral number of original harmonics. This process is similar to TI 

but here electron is bound to recombine with its parent nucleus after tunneling ionization. The 

idea of HHG was given by Franken et al. in 1961 for the first time with the help of ruby laser [7]. 

For this process laser of intensity 1014 W/cm2 or more is required [8]. The harmonics of higher 

order had been observed by the interaction of CO2 laser with plasma obtained from solid [9]. 

Now a days HHG has wide range of applications such as it can be used to generate the train of 
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 attosecond pulses [10]. HHG process can easily be explained by Three-Step Model which is 

given below. 

Ionization 
The first step is ionization in which electron leaves its bound state through tunneling under the 

action of laser beam. 

Acceleration 
Electron reaches in continuum state where it accelerates freely and gains energy from incident 

laser field. 

Recombination 
When laser changes its cycle, electron is attracted by nucleus as well as pushed by laser field, as 

a result high energy photon is released upon recombination of electron with its parent ion.  

Three-step model is shown in figure 2.6 

 

 
 

Figure 2.6: Three-step model 
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We should have idea about perturbation theory when we are going to study the interactions. 

Perturbation theory is a mathematical formulism that provide us approximate solutions when a 

system is subjected to perturbation. There are two kinds of perturbation theory described below 

in detail: 

3.1 Non-degenerate Perturbation Theory 

3.1.1 General Formulism     
Upon solving the time-independent Schrodinger equation for 1-D infinite square well potential, 

we get a set of eigenfunctions 𝛹௡
ை (which are orthonormal to each other) corresponding to 

eigenvalues 𝐸௡
ை. 

𝐻ை𝛹௡
ை = 𝐸௡

ை𝛹௡
ை (3.1) 

Where 

 ⟨𝛹௡
ை|𝛹௠

ை⟩ = 𝛿௠௡ (3.2) 

Subscript 0 showing the unperturbed quantities. Now let us perturb the system by a small amount 

𝐻ʹand try to find the new eigenfunctions and corresponding eigenvalues 

𝐻𝛹௡ = 𝐸௡𝛹௡ (3.3) 

Now it becomes difficult to solve the Schrodinger equation for new complicated potential. So we 

will use Perturbation theory to approximate the solutions knowing the exact solutions for 

unperturbed system 

The new Hamiltonian is  

𝐻 = 𝐻ை + 𝜆𝐻ʹ (3.4) 

Chapter 3 

Atomic Stark Effect 
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 Now we expand 𝐸௡and 𝛹௡ in power series 

𝛹௡ = 𝛹௡
ை + 𝜆𝛹௡

ଵ + 𝜆ଶ𝛹௡
ଶ + ⋯ (3.5) 

𝐸௡ = 𝐸௡
ை + 𝜆𝐸௡

ଵ + 𝜆ଶ𝐸௡
ଶ + ⋯ 

 

(3.6) 

Where 𝜆 is very small number, it can have value between 0 and 1. Using these values in Eq. (3.3) 

൫𝐻ை + 𝜆𝐻ʹ൯[𝛹௡
ை + 𝜆𝛹௡

ଵ + 𝜆ଶ𝛹௡
ଶ + ⋯ ] = (𝐸௡

ை + 𝜆𝐸௡
ଵ + 𝜆ଶ𝐸௡

ଶ + ⋯ )[𝐸௡
ை + 𝜆𝐸௡

ଵ + 𝜆ଶ𝐸௡
ଶ + ⋯ ] 

𝐻ை𝛹௡
ை + 𝜆൫𝐻ை𝛹௡

ଵ + 𝐻ʹ𝛹௡
ை൯ + 𝜆ଶ൫𝐻ை𝛹௡

ଶ + 𝐻ʹ𝛹௡
ଵ൯ + ⋯

= 𝐸௡
ை𝛹௡

ை + 𝜆(𝐸௡
ை𝛹௡

ଵ + 𝐸௡
ଵ𝛹௡

ை) + 𝜆ଶ(𝐸௡
ை𝛹௡

ଶ + 𝐸௡
ଵ𝛹௡

ଵ + 𝐸௡
ଶ𝛹௡

ை) + ⋯ 

Comparing Coefficient of 𝜆௢, 𝜆, 𝜆ଶ on both side we have 

𝐻ை𝛹௡
ை = 𝐸௡

ை𝛹௡
ை (3.7) 

𝐻ை𝛹௡
ଵ + 𝐻ʹ𝛹௡

ை = 𝐸௡
ை𝛹௡

ଵ + 𝐸௡
ଵ𝛹௡

ை (3.8) 

𝐻ை𝛹௡
ଶ + 𝐻ʹ𝛹௡

ଵ = 𝐸௡
ை𝛹௡

ଶ + 𝐸௡
ଵ𝛹௡

ଵ + 𝐸௡
ଶ𝛹௡

ை (3.9) 

3.1.2 First-Order Perturbation Theory     
Using above relations we now calculate first-order correction to the energy. Taking inner product 

the Eq. (3.8) with 𝛹௡
ை and integrating it we have 

⟨𝛹௡
ை|𝐻ை𝛹௡

ଵ⟩ + ൻ𝛹௡
ைห𝐻ʹ𝛹௡

ைൿ = 𝐸௡
ை⟨𝛹௡

ை|𝛹௡
ଵ⟩ + 𝐸௡

ଵ⟨𝛹௡
ை|𝛹௡

ை⟩ 

As 𝐻ை is Hermitian 

⟨𝛹௡
ை|𝐻ை𝛹௡

ଵ⟩ = ⟨𝐻ை𝛹௡
ை|𝛹௡

ଵ⟩ = 𝐸௡
ை⟨𝛹௡

ை|𝛹௡
ଵ⟩ 

Therefore 

𝐸௡
ை⟨𝛹௡

ை|𝛹௡
ଵ⟩ + ൻ𝛹௡

ைห𝐻ʹ𝛹௡
ைൿ = 𝐸௡

ை⟨𝛹௡
ை|𝛹௡

ଵ⟩ + 𝐸௡
ଵ⟨𝛹௡

ை|𝛹௡
ை⟩ 

𝐸௡
ଵ⟨𝛹௡

ை|𝛹௡
ை⟩ = ൻ𝛹௡

ைห𝐻ʹ𝛹௡
ைൿ 

As ⟨𝛹௡
ை|𝛹௡

ை⟩ = 1 

𝐸௡
ଵ = ൻ𝛹௡

ைห𝐻ʹ𝛹௡
ைൿ (3.10) 
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This is the first order energy correction in the nth state of the system 

3.1.3 Second-Order Perturbation Theory  
 Again taking inner product Eq. (3.9) with 𝛹௡

ை and integrating we have     

⟨𝛹௡
ை|𝐻ை𝛹௡

ଶ⟩ + ൻ𝛹௡
ைห𝐻ʹ𝛹௡

ଵൿ = 𝐸௡
ை⟨𝛹௡

ை|𝛹௡
ଶ⟩ + 𝐸௡

ଵ⟨𝛹௡
ை|𝛹௡

ଵ⟩ + 𝐸௡
ଶ⟨𝛹௡

ை|𝛹௡
ை⟩ 

As 𝐻ை is Hermitian 

⟨𝛹௡
ை|𝐻ை𝛹௡

ଶ⟩ = ⟨𝐻ை𝛹௡
ை|𝛹௡

ଶ⟩ = 𝐸௡
ை⟨𝛹௡

ை|𝛹௡
ଶ⟩ 

Also ⟨𝛹௡
ை|𝛹௡

ை⟩ = 1 

Therefore 

𝐸௡
ை⟨𝛹௡

ை|𝛹௡
ଶ⟩ + ൻ𝛹௡

ைห𝐻ʹ𝛹௡
ଵൿ = 𝐸௡

ை⟨𝛹௡
ை|𝛹௡

ଶ⟩ + 𝐸௡
ଵ⟨𝛹௡

ை|𝛹௡
ଵ⟩ + 𝐸௡

ଶ 

ൻ𝛹௡
ைห𝐻ʹ𝛹௡

ଵൿ = 𝐸௡
ଵ⟨𝛹௡

ை|𝛹௡
ଵ⟩ + 𝐸௡

ଶ 

Or 

𝐸௡
ଶ = ൻ𝛹௡

ைห𝐻ʹ𝛹௡
ଵൿ − 𝐸௡

ଵ⟨𝛹௡
ை|𝛹௡

ଵ⟩ 

Now  

⟨𝛹௡
ை|𝛹௡

ଵ⟩ = ෍ 𝐶௠
(௡)⟨𝛹௡

ை|𝛹௠
ை⟩

௠ஷ௡

= 0 

So 

𝐸௡
ଶ = ൻ𝛹௡

ைห𝐻ʹ𝛹௡
ଵൿ = ෍ 𝐶௠

(௡)ൻ𝛹௡
ைห𝐻ʹ𝛹௠

ைൿ
௠ஷ௡

= ෍
ൻ𝛹௠

ைห𝐻ʹ𝛹௡
ைൿൻ𝛹௡

ைห𝐻ʹ𝛹௠
ைൿ

𝐸௡
ை − 𝐸௠

ை
௠ஷ௡

 

Finally 
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𝐸௡

ଶ = ෍
หൻ𝛹௠

ைห𝐻ʹ𝛹௡
ைൿห

ଶ

𝐸௡
ை − 𝐸௠

ை
௠ஷ௡

 
(3.11) 

which is the second order correction of energy in the nth state of atom  

3.2 Degenerate Perturbation Theory 
Suppose we have two orthonormal states 𝛹௔

ை, 𝛹௕
ை having same energy in the absence of external 

perturbation that is 

𝐻ை𝛹௔
ை = 𝐸ை𝛹௔

ை (3.12) 

𝐻ை𝛹௕
ை = 𝐸ை𝛹௕

ை (3.13) 

where  

ൻ𝛹௔
ைห𝛹௕

ைൿ = 0 (3.14) 

The linear combination of these two states  

𝛹ை = 𝛼𝛹௔
ை + 𝛽𝛹௕

ை (3.15) 

which is also the eigenstate of 𝐻ை having same eigenvalue 𝐸ை, therefore 

𝐻ை𝛹ை = 𝐸ை𝛹ை 

Now let’s apply external perturbation 𝐻ʹ which splits the unperturbed energy 𝐸ை as shown in 

figure and solve the new Schrödinger Equation  

𝐻𝛹 = 𝐸𝛹 (3.16) 

Where 

𝐻 = 𝐻ை + 𝜆𝐻ʹ (3.17) 

𝛹 = 𝛹ை + 𝜆𝛹ଵ + 𝜆ଶ𝛹ଶ + ⋯ (3.18) 

𝐸 = 𝐸ை + 𝜆𝐸ଵ + 𝜆ଶ𝐸ଶ + ⋯ (3.19) 

Equation (3.16) becomes 

൫𝐻ை + 𝜆𝐻ʹ൯[𝛹ை + 𝜆𝛹ଵ + 𝜆ଶ𝛹ଶ + ⋯ ] = (𝐸ை + 𝜆𝐸ଵ + 𝜆ଶ𝐸ଶ + ⋯ )[𝛹ை + 𝜆𝛹ଵ + 𝜆ଶ𝛹ଶ + ⋯ ] 
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 𝐻ை𝛹ை + 𝜆൫𝐻ை𝛹ଵ + 𝐻ʹ𝛹ை൯ + 𝜆ଶ൫𝐻ை𝛹ଶ + 𝐻ʹ𝛹ଵ൯ + ⋯

= 𝐸ை𝛹ை + 𝜆(𝐸ை𝛹ଵ + 𝐸ଵ𝛹ை) + 𝜆ଶ(𝐸ை𝛹ଶ + 𝐸ଵ𝛹ଵ + 𝐸ଶ𝛹ை) + ⋯ 

Comparing Coefficient of 𝜆 on both sides we obtain 

𝐻ை𝛹ଵ + 𝐻ʹ𝛹ை = 𝐸ை𝛹ଵ + 𝐸ଵ𝛹ை 

Taking inner product with 𝛹௔
ை  

⟨𝛹௔
ை|𝐻ை𝛹ଵ⟩ + ൻ𝛹௔

ைห𝐻ʹ𝛹ைൿ = 𝐸ை⟨𝛹௔
ை|𝛹ଵ⟩ + 𝐸ଵ⟨𝛹௔

ை|𝛹ை⟩ 

But 𝐻ை is Hermitian so  

⟨𝛹௔
ை|𝐻ை𝛹ଵ⟩ = ⟨𝐻ை𝛹௔

ை|𝛹ଵ⟩ = 𝐸ை⟨𝛹௔
ை|𝛹ଵ⟩ 

Therefore 

𝐸ை⟨𝛹௔
ை|𝛹ଵ⟩ + ൻ𝛹௔

ைห𝐻ʹ𝛹ைൿ = 𝐸ை⟨𝛹௔
ை|𝛹ଵ⟩ + 𝐸ଵ⟨𝛹௔

ை|𝛹ை⟩ 

ൻ𝛹௔
ைห𝐻ʹ𝛹ைൿ = 𝐸ଵ⟨𝛹௔

ை|𝛹ை⟩ 

Using equation (3.16) we get  

ൻ𝛹௔
ைห𝐻ʹ(𝛼𝛹௔

ை + 𝛽𝛹௕
ை)ൿ = 𝐸ଵൻ𝛹௔

ைห𝛼𝛹௔
ை + 𝛽𝛹௕

ைൿ 

𝛼ൻ𝛹௔
ைห𝐻ʹ𝛹௔

ைൿ + 𝛽ൻ𝛹௔
ைห𝐻ʹ𝛹௕

ைൿ = 𝛼𝐸ଵ⟨𝛹௔
ை|𝛹௔

ை⟩ + 𝛽𝐸ଵൻ𝛹௔
ைห𝛹௕

ைൿ 

But  

ൻ𝛹௔
ைห𝛹௕

ைൿ = 0 

⟨𝛹௔
ை|𝛹௔

ை⟩ = 1 

Therefore  

𝛼ൻ𝛹௔
ைห𝐻ʹ𝛹௔

ைൿ + 𝛽ൻ𝛹௔
ைห𝐻ʹ𝛹௕

ைൿ = 𝛼𝐸ଵ 

In more compact form we can write this as 
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 𝛼𝑊௔௔ + 𝛽𝑊௔௕ = 𝛼𝐸ଵ (3.20) 

Where  

𝑊௔௔ = ൻ𝛹௔
ைห𝐻ʹ𝛹௔

ைൿ 

𝑊௔௕ = ൻ𝛹௔
ைห𝐻ʹ𝛹௕

ைൿ 

Similarly inner product with 𝛹௔
ை gives 

𝛼𝑊௕௔ + 𝛽𝑊௕௕ = 𝛽𝐸ଵ (3.21) 

 

3.3 DC Stark Effect 
When atoms or molecules are placed in external uniform electric field, their spectral lines split 

up this effect is observed by Johannes Stark in 1913 [11], which is known as Stark effect and the 

amount of splitting is termed as Stark shift. The amount of splitting is directly proportional to the 

applied field. This effect had also been observed by Antonino Lo Surdo individually in the same 

year thus sometimes it is also called Stark-Lo Surdo effect. Stark effect is analogous to Zeeman 

effect where energy levels split up into various sub-levels in the presence of magnetic field. Stark 

effect can be explained completely with the help of quantum mechanics. Here we discuss two 

kind of Stark effects i.e. first-order which is linear and the second-order which is quadratic. 

 

3.3.1 Linear Stark Effect 
We can illustrate this effect by an example of hydrogen atom, where the Balmer line splits into 

three components when it is placed in uniform electric field of 106 V/cm. We use first order 

degenerate perturbation theory and quantum numbers to explain linear Stark effect. 

For the first excited state of H-atom we have 

For n = 2 

𝑙 = 0, 𝑚 = 0 

𝑙 = 1, 𝑚 = −1,0,1 
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 So in the absence of electric field, there are four degenerate states 

|200>, |210>, |211>, |21-1> 

The original Hamiltonian is 

𝐻௢ =
𝑃ଶ

2𝑚
−

𝑒ଶ

𝑟
 

(3.22) 

Now we apply electric field “E” along z-axis, the perturbed Hamiltonian due to the interaction of 

electron dipole moment “𝑑” with external electric field Eሬሬ⃗  = Eẑ is  

𝐻ʹ = −𝑑. 𝐸ሬ⃗  

= −𝑒𝑧. 𝐸ሬ⃗  

= −𝑒𝑧𝐸𝐶𝑜𝑠180௢ 

= 𝑒𝑧𝐸 

= 𝑒𝐸𝑟𝐶𝑜𝑠𝜃 

𝐻ʹ = 𝑒𝐸𝑟𝐶𝑜𝑠𝜃 (3.23) 

Total Hamiltonian can be written as 

𝐻෡ = 𝐻௢ + 𝐻ʹ (3.24) 

As E ≥ 106 V/cm, so we may neglect spin and all other small effects like Lamb shift, relativistic 

corrections and hyperfine effects in this Hamiltonian. 

To calculate change in energy Eʹ due to interaction Hamiltonian Hʹ we solve an eigenvalue 

equation [12]. 

𝐻෡ʹ|𝛹 >= 𝐸ʹ|𝛹 > 

(𝐻෡ʹ − 𝐼𝐸ʹ)|𝛹 >= 0 (3.25) 

For non-trivial solution we write above equation in determinant form as                    
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⟨200|Hʹ|210⟩ = ⟨210|Hʹ|200⟩ 

= න 𝑅ଶଵ(r). 𝑌ଵ
଴(θ, φ). eErCosθ. 𝑅ଶ଴(𝑟). 𝑌଴

଴(θ, φ). 𝑟ଶSinθdrdθdφ 

= න
1

√24
𝑎௢

ିଷ
ଶ

𝑟
𝑎௢

𝑒ି ௥
ଶ௔೚. ඨ 3

4𝜋
𝐶𝑜𝑠𝜃. eErCosθ.

1
√2

𝑎௢
ିଷ

ଶ ൬1 −
𝑟

2𝑎௢
൰ 𝑒ି ௥

ଶ௔೚. ඨ 1
4𝜋

. 𝑟ଶSinθdrdθdφ 

 

=
1

√24
ඨ 3

4𝜋
1

√2
ඨ 1

4𝜋
.

1
𝑎௢

ସ . 𝑒𝐸. න 𝑒ି ௥
௔೚𝑟ସ ൬1 −

𝑟
2𝑎௢

൰ dr
ஶ

଴

න 𝐶𝑜𝑠ଶθSinθdθ
గ

଴

න dφ
ଶగ

଴

 

=
1

16𝜋
.

1
𝑎௢

ସ . 𝑒𝐸. න 𝑒ି ௥
௔೚𝑟ସ ൬1 −

𝑟
2𝑎௢

൰ dr
ஶ

଴

. {−
𝐶𝑜𝑠ଷθ

3
|଴

గ. 2𝜋 

=
1

16𝜋
.

1
𝑎௢

ସ . 𝑒𝐸. න 𝑒ି ௥
௔೚𝑟ସ ൬1 −

𝑟
2𝑎௢

൰ dr
ஶ

଴

.
2
3

. 2𝜋 

=
1

12𝑎௢
ସ . 𝑒𝐸. න 𝑒ି ௥

௔೚𝑟ସ ൬1 −
𝑟

2𝑎௢
൰ dr

ஶ

଴

 

=
1

12𝑎௢
ସ . 𝑒𝐸.

⎣
⎢
⎢
⎢
⎢
⎡

න 𝑒ି ௥
௔೚𝑟ସdr

ஶ

଴

−
1

2𝑎௢
{𝑟ଷ 𝑒ିଶ௥

௔೚

− 2
𝑎௢

|଴
ஶ

ᇣᇧᇧᇤᇧᇧᇥ
଴

− 5 න 𝑟ସ 𝑒ି ௥
௔೚

− 1
𝑎௢

dr
ஶ

଴

}

⎦
⎥
⎥
⎥
⎥
⎤
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=
1

12𝑎௢
ସ . 𝑒𝐸. ൤𝐼 −

1
2𝑎௢

{5𝑎௢}𝐼൨      ;      𝐼 = න 𝑒ି ௥
௔೚𝑟ସdr

ஶ

଴

 

=
1

12𝑎௢
ସ . 𝑒𝐸. [−

3
2

𝐼] 

=
−1
8𝑎௢

ସ . 𝑒𝐸. [𝐼] 

=
−1
8𝑎௢

ସ . 𝑒𝐸.

⎣
⎢
⎢
⎢
⎢
⎡

𝑟ସ 𝑒ିଶ௥
௔೚

− 2
𝑎௢

|଴
ஶ

ᇣᇧᇧᇤᇧᇧᇥ
଴

− 4 න 𝑟ଷ 𝑒ି ௥
௔೚

− 1
𝑎௢

dr
ஶ

଴

⎦
⎥
⎥
⎥
⎥
⎤

 

=
−1
8𝑎௢

ସ . 𝑒𝐸. [4𝑎௢] න ൜𝑒ି ௥
௔೚. 𝑟ଷൠ dr

ஶ

଴

 

=
−1
8𝑎௢

ସ . 𝑒𝐸. [4𝑎௢]

⎣
⎢
⎢
⎢
⎢
⎡

𝑟ଷ 𝑒ି ௥
௔೚

− 1
𝑎௢

|଴
ஶ

ᇣᇧᇧᇤᇧᇧᇥ
଴

− 3 න 𝑟ଶ 𝑒ି ௥
௔೚

− 1
𝑎௢

dr
ஶ

଴

⎦
⎥
⎥
⎥
⎥
⎤

 

=
−1
8𝑎௢

ସ . 𝑒𝐸. [4𝑎௢]. [3𝑎௢] න ൜𝑒ି ௥
௔೚. 𝑟ଶൠ dr

ஶ

଴

 

=
−1
8𝑎௢

ସ . 𝑒𝐸. [4𝑎௢]. [3𝑎௢]

⎣
⎢
⎢
⎢
⎢
⎡

𝑟ଶ 𝑒ି ௥
௔೚

− 1
𝑎௢

|଴
ஶ

ᇣᇧᇧᇤᇧᇧᇥ
଴

− 2 න 𝑟
𝑒ି ௥

௔೚

− 𝑟
𝑎௢

dr
ஶ

଴

⎦
⎥
⎥
⎥
⎥
⎤

 

=
−1
8𝑎௢

ସ . 𝑒𝐸. [4𝑎௢]. [3𝑎௢]. [2𝑎௢] න ൜𝑒ି ௥
௔೚. 𝑟ൠ dr

ஶ

଴
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= [
−1
8𝑎௢

ସ . 𝑒𝐸. [4𝑎௢]. [3𝑎௢]. [ 2𝑎௢]

⎣
⎢
⎢
⎢
⎢
⎡

𝑟
𝑒ି ௥

௔೚

− 1
𝑎௢

|଴
ஶ

ᇣᇧᇤᇧᇥ
଴

− න
𝑒ି ௥

௔೚

− 1
𝑎௢

dr
ஶ

଴

⎦
⎥
⎥
⎥
⎥
⎤

 

=
−1
8𝑎௢

ସ . 𝑒𝐸. [4𝑎௢]. [3𝑎௢]. [2𝑎௢]. [𝑎௢] න ൜𝑒ି ௥
௔೚ൠ dr

ஶ

଴

 

=
−1
8𝑎௢

ସ . 𝑒𝐸. [4𝑎௢]. [3𝑎௢]. [2𝑎௢]. [𝑎௢]. {
𝑒ି ௥

௔೚

− 1
𝑎௢

|଴
ஶ 

=
−1
8𝑎௢

ସ . 𝑒𝐸. [4𝑎௢]. [3𝑎௢]. [2𝑎௢]. [𝑎௢]. [−𝑎௢]. ൜
1

𝑒ஶ −
1

𝑒଴ൠ 

=
−1
8𝑎௢

ସ . 𝑒𝐸. [24𝑎௢
ହ] 

= −3𝑒𝐸𝑎ை 

Where remaining all the integrals are zero due to orthogonality condition. 

න 𝛹௡௟௠
∗ 𝛹௡ˊ௟ˊ௠ˊ 𝑟ଶ𝑆𝑖𝑛𝜃𝑑𝑟𝑑𝜃𝑑𝜑 =  𝛿௡௡ˊ𝛿௟௟ˊ𝛿௠௠ˊ 

Therefore determinant becomes 

 

Upon the expansion we have 

𝐸ʹ = −3𝑒𝐸𝑎௢, 0,0, +3𝑒𝐸𝑎௢ (3.26) 



     

                                                        
 

21 | P a g e  
 

Atomic Stark Effect 

 

 

Figure 3.1: Energy splitting for n=2 

 

We may notice here degeneracy has partially lifted with the perturbation used we are left with 

two degenerate states. The amount of energy splitting has linear dependence on the external 

electric field. 

Thus for 𝑛 = 2 the values of energy of new levels can be written as 

𝐸ଶభ =  
−13.6

2ଶ − 3eE𝑎௢ 
(3.27) 

𝐸ଶమ =
−13.6

2ଶ  
(3.28) 

𝐸ଶయ =
−13.6

2ଶ  
(3.29) 

𝐸ଶభ =  
−13.6

2ଶ + 3eE𝑎௢ 
(3.30) 

The wave functions corresponding to these Eigen values are 

|𝛹ଶ >ଵ=
1

√2
(|200 >  + |210 >) (3.31) 

 

|𝛹ଶ >ଶ=
1

√2
( |211 >) (3.32) 

|𝛹ଶ >ଷ=
1

√2
( |21 − 1 >) (3.33) 
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|𝛹ଶ >ସ=
1

√2
(|200 > − |210 >) 

(3.34) 

We may write perturbed Hamiltonian in matrix form as 

 

 

Here we can see that degeneracy has partially lifted, however the states |211>, |21-1> are still 

degenerate. Spin orbit interactions or other corrections might be invoked to remove degeneracy 

completely. 

3.3.2 Quadratic Stark Effect 
For H-atom in ground state, no permanent electric dipole moment exists, so there are only 

quadratic dependence of energy on external applied electric field which is known as quadratic 

Stark effect. We see that the ground state of H-atom which is non-degenerate state, no splitting 

observed after the application of field because for n = 1, we have l = 0, m = 0. 

Also first order non-degenerate perturbation theory says 

𝐸ʹ = 𝑒𝐸⟨100|𝑧̂|100⟩ 

= 𝑒𝐸 න |𝛹ଵ଴଴(𝑟)|ଶ 𝑟𝐶𝑜𝑠𝜃𝑑𝑟ଷ 

= 0 , being an odd integral. 

So there is no linear Stark effect for ground state, in such state we observe quadratic Stark effect 

which is described by second-order non-degenerate perturbation theory. 
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𝐸ʹ = 𝑒ଶ𝐸ଶ ෍

|⟨𝑛𝑙𝑚|𝑧̂|100⟩|ଶ

𝐸ଵ଴଴
(଴) −𝐸௡௟௠

(଴)
௡௟௠ஷଵ଴଴

 
(3.35) 

where n = 2, 3, 4 … 

Now 

= ෍ |⟨𝑛𝑙𝑚|𝑧̂|100⟩|ଶ

௡௟௠ஷଵ଴଴

 

= ෍ |⟨𝑛𝑙𝑚|𝑧̂|100⟩|ଶ

௡௟௠

 

=< 100|ẑ ൝෍|𝑛𝑙𝑚˃˂𝑛𝑙𝑚|
௡௟௠

ൡ ẑ|100 > 

= ⟨100|ẑଶ|100⟩ 

= ⟨100|𝑟ଶ𝐶𝑜𝑠ଶθ|100⟩ 

= න 𝑅ଵ଴(r)𝑌଴
଴(θ, φ). 𝑟ଶ𝐶𝑜𝑠ଶθ. 𝑅ଵ଴(r)𝑌଴

଴(θ, φ). 𝑟ଶSinθdrdθdφ 

= න |𝑅ଵ଴(r)|ଶ. 𝑟ଶ𝐶𝑜𝑠ଶθ. |𝑌଴
଴(θ, φ)|ଶ. 𝑟ଶSinθdrdθdφ 

= න ൜2𝑎௢
ିଷ

ଶ𝑒ି ௥
௔೚ൠ

ଶ
. 𝑟ଶ𝐶𝑜𝑠ଶθ. ൜

1
4𝜋

ൠ . 𝑟ଶSinθdrdθdφ 

=  ൜
1

4𝜋
ൠ ൜2𝑎௢

ିଷ
ଶൠ

ଶ
න ൜𝑒ି ௥

௔೚ൠ
ଶ

𝑟ସdr
ஶ

଴

න 𝐶𝑜𝑠ଶθSinθdθ
గ

଴

න dφ
ଶగ

଴

 

=
1

𝜋𝑎௢
ଷ න ൜𝑒ି ଶ௥

௔೚𝑟ସൠ dr
ஶ

଴

{−
𝐶𝑜𝑠ଷθ

3
|଴

గ. 2𝜋 

=
4

3𝑎௢
ଷ න ൜𝑒ି ଶ௥

௔೚. 𝑟ସൠ dr
ஶ

଴
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=
4

3𝑎௢
ଷ

⎣
⎢
⎢
⎢
⎢
⎡

𝑟ସ 𝑒ିଶ௥
௔೚

− 2
𝑎௢

|଴
ஶ

ᇣᇧᇧᇤᇧᇧᇥ
଴

− 4 න 𝑟ଷ 𝑒ି ଶ௥
௔೚

− 2
𝑎௢

dr
ஶ

଴

⎦
⎥
⎥
⎥
⎥
⎤

 

=
4

3𝑎௢
ଷ [2𝑎௢] න ൜𝑒ି ଶ௥

௔೚. 𝑟ଷൠ dr
ஶ

଴

 

=
4

3𝑎௢
ଷ [2𝑎௢]

⎣
⎢
⎢
⎢
⎢
⎡

𝑟ଷ 𝑒ିଶ௥
௔೚

− 2
𝑎௢

|଴
ஶ

ᇣᇧᇧᇤᇧᇧᇥ
଴

− 3 න 𝑟ଶ 𝑒ି ଶ௥
௔೚

− 2
𝑎௢

dr
ஶ

଴

⎦
⎥
⎥
⎥
⎥
⎤

 

=
4

3𝑎௢
ଷ [2𝑎௢]. ൤

3
2

𝑎௢൨ න ൜𝑒ି ଶ௥
௔೚. 𝑟ଶൠ dr

ஶ

଴

 

=
4

3𝑎௢
ଷ [2𝑎௢]. ൤

3
2

𝑎௢൨

⎣
⎢
⎢
⎢
⎢
⎡

𝑟ଶ 𝑒ିଶ௥
௔೚

− 2
𝑎௢

|଴
ஶ

ᇣᇧᇧᇤᇧᇧᇥ
଴

− 2 න 𝑟
𝑒ି ଶ௥

௔೚

− 2
𝑎௢

dr
ஶ

଴

⎦
⎥
⎥
⎥
⎥
⎤

 

=
4

3𝑎௢
ଷ [2𝑎௢]. [

3
2

𝑎௢]. [ 𝑎௢] න ൜𝑒ି ଶ௥
௔೚. 𝑟ൠ dr

ஶ

଴

 

=
4

3𝑎௢
ଷ [2𝑎௢]. [

3
2

𝑎௢]. [ 𝑎௢] 

⎣
⎢
⎢
⎢
⎢
⎡

𝑟
𝑒ିଶ௥

௔೚

− 2
𝑎௢

|଴
ஶ

ᇣᇧᇤᇧᇥ
଴

− න
𝑒ି ଶ௥

௔೚

− 2
𝑎௢

dr
ஶ

଴

⎦
⎥
⎥
⎥
⎥
⎤

 

=
4

3𝑎௢
ଷ [2𝑎௢]. ൤

3
2

𝑎௢൨ . [ 𝑎௢]. [
𝑎௢

2
] න ൜𝑒ି ଶ௥

௔೚ൠ dr
ஶ

଴
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=
4

3𝑎௢
ଷ [2𝑎௢]. ൤

3
2

𝑎௢൨ . [ 𝑎௢]. ቂ
𝑎௢

2
ቃ {

𝑒ିଶ௥
௔೚

− 2
𝑎௢

|଴
ஶ 

=
4

3𝑎௢
ଷ .

3𝑎௢
ହ

4  

=  𝑎௢
ଶ 

Now for n = 2 

𝐸ଵ଴଴
(଴) −𝐸௡௟௠

(଴) ≤ 𝐸ଵ଴଴
(଴) −𝐸ଶ଴଴

(଴)  

As 

𝐸௡଴଴
(଴) =  

−𝑒ଶ

8𝜋 ∈௢ 𝑎௢

1
𝑛ଶ 

In atomic units 

𝐸௡଴଴
(଴) =  

−𝑒ଶ

2𝑎௢

1
𝑛ଶ  𝑤ℎ𝑒𝑟𝑒 𝑘 =

1
4𝜋 ∈௢

= 1 

Therefore 

𝐸ଵ଴଴
(଴) −𝐸ଶ଴଴

(଴) =  
−𝑒ଶ

2𝑎௢
−

−𝑒ଶ

8𝑎௢
 

=  
−3𝑒ଶ

8𝑎௢
 

Hence 

𝐸ʹ = 𝑒ଶ𝐸ଶ 𝑎௢
ଶ

−3𝑒ଶ

8𝑎௢

 

𝐸ʹ = −
8
3

𝑎௢
ଷ𝐸ଶ 

(3.36) 
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 which is the formula to calculate the Stark splitting. It is clear from above relation that 𝐸ʹ has 

square dependence on strength of the applied electric field that’s why this named as quadratic 

stark effect. 

3.4 AC Stark Effect 
Previously we have seen that when an atom is placed in uniform electric field its energy level 

splits by a significant amount. Now we calculate the shift in energy levels due to time varying 

electric field. If incident electric field is of angular frequency 𝜔 the corresponding change in 

energy levels is known as AC Stark effect 

Consider the external electric field is along Z axis i.e. 

Ԑሬ⃗ (𝑡) = Ԑ(𝑡)𝑧̂ 

We also suppose 

Ԑ(𝑡) = Ԑை𝐶𝑜𝑠(𝜔𝑡) 

where Ԑை is the amplitude of the electric field. So we may write the interaction Hamiltonian 

𝐻ʹ (𝑡) as 

𝐻ʹ (𝑡) = −Ԑை𝐷௓𝐶𝑜𝑠(𝜔𝑡) (3.37) 

In the presence of time varying electric field, 𝜓(𝑥, 𝑡) satisfies the time-dependent Schrödinger 

Equation 

𝑖ℏ
𝜕𝜓(𝑥, 𝑡)

𝜕𝑥
= (𝐻௢ + 𝐻ʹ)𝜓(𝑥, 𝑡) 

(3.38) 

Lets expand 𝜓(𝑥, 𝑡) in energy eigenstates in the form of  

𝜓(𝑥, 𝑡) = ෍ 𝐶௞𝜓௞(𝑥)𝑒ି௜ாೖ௧/ℏ

௞

 (3.39) 

Suppose we switch on electric field at 𝑡 = 0. Before this let atom is in state 𝑎 =  𝛾 ௃𝑀௃. The 

initial condition is 

𝐶௞(𝑡) = 𝛿௞௔     𝑡 ≤ 0 (3.40) 
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 Now we write the amplitude Ca(t) as 

𝐶௔(𝑡) = |𝐶௔(𝑡)|𝑒ି௜ఎ(௧) (3.41) 

Where 𝜂 is real phase and 𝜂(0) = 0. 

The probability of finding atom in k-state at any time “t” is |𝐶௔(𝑡)|ଶ which is very small for 𝑘 ≠

𝑎 unless the resonance occurs at 𝜔 = |𝜔௞௔| but here we only study the case for which 𝜔 ≠

|𝜔௞௔|, so that |𝐶௞(𝑡)| ≪ 1 for 𝑘 ≠ 𝑎 and 𝐶௔(𝑡) ≅ 1. To understand the significance of phase (𝑡) 

, we note that the term for which  𝑘 = 𝑎 in the expansion 

𝐶௔(𝑡)𝜓௔(𝑥)𝑒ି ௜ாೌ௧
ℏ = |𝐶௔(𝑡)|𝜓௔(𝑥)𝑒ି௜/ℏ ∫ {ாೌା୼ாೌ(௧ʹ)}ௗ௧ʹ೟

బ  

With 

Δ𝐸௔ = ℏ𝜂̇(𝑡) (3.42) 

Differentiating Equation (3.16) 

𝐶௔(𝑡) =
𝑑
𝑑𝑡

|𝐶௔(𝑡)|𝑒ି௜ఎ(௧) − 𝑖𝜂̇(𝑡)𝐶௔(𝑡)𝑒ି௜ఎ(௧) 
(3.43) 

Putting this value in above Schrödinger Equation, we get 

𝐶̇௕(𝑡) =
−𝑖
ℏ

෍ 𝐻ʹ௕௞(𝑡)𝐶௞(𝑡)𝑒௜ఠ್ೖ௧ʹ

௞

 (3.44) 

These set of coupled Equations can be solved to second order perturbation 𝐻ʹ (𝑡) to get 

𝐶௔(𝑡) ≅ 1 + (𝑖ℏ)ିଶ ෍ න 𝐻ʹ௔௞(𝑡ʹ)𝑒௜ఠೌೖ௧ʹ𝑑𝑡ʹ න 𝐻ʹ௞௔(𝑡ʹʹ)𝑒௜ఠೌೖ௧ʹʹ𝑑𝑡ʹʹ
௧ʹ

଴

௧

଴௞ஷ௔

 

 

(3.45) 

Now 

𝐶̇௔(𝑡) = (𝑖ℏ)ିଶ ෍ 𝑒௜ఠೌೖ௧ʹ න 𝐻ʹ௔௞(𝑡ʹ)𝑒௜ఠೖೌ௧ʹ𝑑𝑡ʹ
௧

଴௞ஷ௔

 
(3.46) 

where 𝐻ʹ௔௔(𝑡) = 0 

We note that the unperturbed amplitude 𝐶௔
(଴) = 1, Therefore 
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 𝐶௔̇(𝑡) ≈ 𝑖𝜂̇(𝑡) (3.47) 

Comparing Equation (3.42) and (3.47) 

Δ𝐸௔ = −𝑖ℏ𝐶௔̇(𝑡) 

Δ𝐸௔ = (𝑖ℏ)ିଵ ෍ 𝐻ʹ௔௞(𝑡)
௞ஷ௔

𝑒ି௜ఠೌೖ௧ න 𝑒ି௜ఠೌೖ௧ʹ𝐻ʹ௞௔(𝑡ʹ)𝑑𝑡ʹ
௧

଴

 

We are interested in the quantity ∆𝐸௔തതത(𝑡), which is the mean value of Δ𝐸௔(𝑡), i.e. 

∆𝐸௔തതത = −
𝐸଴

ଶ

4ℏ
෍|⟨𝑘|𝐷௭|𝑎⟩|ଶ

௞ஷ௔

൜
1

𝜔௞௔ + 𝜔
+

1
𝜔௞௔ − 𝜔

ൠ 

∆𝐸௔തതത = −
𝐸଴

ଶ

2ℏ
෍|⟨𝑘|𝐷௭|𝑎⟩|ଶ

௞ஷ௔

൜
𝜔௞௔

𝜔௞௔
ଶ − 𝜔ଶൠ 

∆𝐸௔തതത = −
𝐸ଶതതതത

ℏ
෍|⟨𝑘|𝐷௭|𝑎⟩|ଶ

௞ஷ௔

൜
𝜔௞௔

𝜔௞௔
ଶ − 𝜔ଶൠ 

∆𝐸௔തതത = −
1
2

𝐸ଶതതതത(𝑡)𝛼൫𝛾 ௃𝑀௝, 𝜔൯ 
(3.48) 

Where 𝛼(𝛾 ௃𝑀௝, 𝜔) is dynamic polarizability given by 

𝛼൫𝛾 ௃𝑀௝, 𝜔൯ = 2 ෍
{𝐸ఊʹ௃ʹ − 𝐸ఊ௃} หൻ𝛾ʹ𝐽ʹ𝑀௝ห𝐷௭ห𝛾𝐽𝑀௝ൿห

ଶ

(𝐸ఊʹ௃ʹ − 𝐸ఊ௃)ଶ − ℏଶ𝜔ଶ

ʹ

ఊʹ௃ʹ

 
(3.49) 
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As we see in Atomic Physics when we add one electron in an atom whose valance shell is 

complete, new shell starts. When one shell closes we see the energy gap there. The ionization 

energy is very high for closed shell as compared to the incomplete shell. Similar things happen in 

nucleus, here exist certain Magic Numbers that give unique properties to the nucleus. We have 

following evidences that confirms the existence of shells in nucleus.  

 The nuclei having any of the magic number will be extra stable. 

 The neutron, proton separation energy for these nuclei is very high for such nuclei. 

 The nuclear radius decreases at these numbers. 

 Neutron absorption decreases at magic numbers as shown in figure. 

These experiments show that the shells exist at magic numbers 2, 8, 20, 28, 50, 82, 126… 

beyond this we do not have stable nuclei. We search out what is the reason behind that provide 

extra stability to these nuclei. Different attempts are taken to explain these magic numbers 

theoretically by solving Schrödinger Equation assuming different nuclear potentials. Some of 

them are described as follows: 

4.1 Shell Model for Simple Harmonic Oscillator Potential 
From Schrödinger Equation 

ቊ
−ℏଶ

2𝑚
∇ଶ + 𝑉(𝑟)ቋ 𝛹 = 𝐸𝛹 

(4.1) 

Where ∇ଶin Spherical Coordinates is 
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 ∇ଶ=
1
𝑟ଶ

𝜕
𝜕𝑟

൬𝑟ଶ 𝜕
𝜕𝑟

൰ +
1

𝑟ଶ𝑆𝑖𝑛𝜃
𝜕

𝜕𝜃
൬𝑆𝑖𝑛𝜃

𝜕
𝜕𝜃

൰ +
1

𝑟ଶ𝑆𝑖𝑛ଶ𝜃
𝜕ଶ

𝜕𝜑ଶ 
(4.2) 

Also 

𝐿෠ଶ = −ℏଶ ቊ
1

𝑆𝑖𝑛𝜃
𝜕

𝜕𝜃
൬𝑆𝑖𝑛𝜃

𝜕
𝜕𝜃

൰ +
1

𝑟ଶ𝑆𝑖𝑛ଶ𝜃
𝜕ଶ

𝜕𝜑ଶቋ 
(4.3) 

Therefore 

∇ଶ=
1
𝑟ଶ

𝜕
𝜕𝑟 ൜𝑟ଶ 𝜕

𝜕𝑟ൠ +
1
𝑟ଶ ቆ−

𝐿෠ଶ

ℏଶቇ 
(4.4) 

Hence 

ቈ
−ℏଶ

2𝑚
ቊ

1
𝑟ଶ

𝜕
𝜕𝑟

൬𝑟ଶ 𝜕
𝜕𝑟

൰ −
1
𝑟ଶ

𝐿෠ଶ

ℏଶቋ + 𝑉(𝑟)቉ 𝛹 = 𝐸𝛹 

Now Let 

𝛹(𝑟, θ, φ) = 𝑅௡௟(r)𝑌௟
௠(θ, φ) (4.5) 

Schrödinger Equation (4.1) becomes 

ቈ
−ℏଶ

2𝑚
ቊ

1
𝑟ଶ

𝜕
𝜕𝑟

൬𝑟ଶ 𝜕
𝜕𝑟

൰ −
1
𝑟ଶ

𝐿෠ଶ

ℏଶቋ + 𝑉(𝑟)቉ 𝑅௡௟(r)𝑌௟
௠(θ, φ) = 𝐸𝑅௡௟(r)𝑌௟

௠(θ, φ) 

−ℏଶ

2𝑚
ቊ

1
𝑟ଶ

𝜕
𝜕𝑟

൬𝑟ଶ 𝜕
𝜕𝑟

൰ R(r)𝑌௟
௠ −

1
𝑟ଶ

𝐿෠ଶ

ℏଶ R(r)𝑌௟
௠ቋ + 𝑉(𝑟)R(r)𝑌௟

௠ = 𝐸𝑅௡௟(r)𝑌௟
௠(θ, φ) 

−ℏଶ

2𝑚
൝𝑌௟

௠ 1
𝑟ଶ

𝜕
𝜕𝑟

൭𝑟ଶ 𝜕
𝜕𝑟

R(r)൱ −
1
𝑟ଶ

ℏଶ𝑙(𝑙 + 1)
ℏଶ R(r)𝑌௟

௠ൡ + 𝑉(𝑟)R(r)𝑌௟
௠(θ, φ) = 𝐸R(r)𝑌௟

௠
 

Dividing by 𝑌௟
௠(θ, φ) both sides 

−ℏଶ

2𝑚𝑟ଶ
𝜕

𝜕𝑟
൭𝑟ଶ 𝜕

𝜕𝑟
R(r)൱ +

ℏଶ

2𝑚
𝑙(𝑙 + 1)

𝑟ଶ R(r) + 𝑉(𝑟)R(r) = 𝐸R(r) 



   
 
 

31 | P a g e  
 

Discrete States of Nucleus 

 −ℏଶ

2𝑚𝑟ଶ
𝜕

𝜕𝑟
൭𝑟ଶ 𝜕

𝜕𝑟
R(r)൱ + ቊ

ℏଶ

2𝑚𝑟ଶ 𝑙(𝑙 + 1) + 𝑉(𝑟)ቋ R(r) = 𝐸R(r) 
(4.6) 

Now to find the value of 𝑟ଶ డ
డ௥

R(r) let’s make a substitution. 

R(r) =
u(r)

𝑟
 

(4.7) 

𝜕
𝜕𝑟

R(r) =
𝜕

𝜕𝑟
u(r)

𝑟
= −

u(r)
𝑟ଶ +

1
𝑟

𝜕𝑢
𝜕𝑟

 

⇒ 𝑟ଶ 𝜕
𝜕𝑟

R(r) = 𝑟ଶ ቊ−
u(r)
𝑟ଶ +

1
𝑟

𝜕𝑢
𝜕𝑟

ቋ 

= −u(r) + 𝑟
𝜕𝑢
𝜕𝑟

 

⇒
𝜕

𝜕𝑟
ቊ𝑟ଶ 𝜕R(r)

𝜕𝑟
ቋ =

𝜕
𝜕𝑟

൜−u(r) + 𝑟
𝜕𝑢
𝜕𝑟

ൠ 

⇒
𝜕

𝜕𝑟
ቊ𝑟ଶ 𝜕R(r)

𝜕𝑟
ቋ = −

𝑑𝑢
𝑑𝑟

+ 𝑟
𝑑ଶ𝑢
𝑑𝑟ଶ +

𝑑𝑢
𝑑𝑟

(1) 

⇒
𝜕

𝜕𝑟 ቊ𝑟ଶ 𝜕R(r)
𝜕𝑟 ቋ = 𝑟

𝑑ଶ𝑢
𝑑𝑟ଶ  

(4.8) 

Put this value in Eq.(4.6) we have 

−ℏଶ

2𝑚𝑟ଶ ቆ𝑟
𝑑ଶ𝑢
𝑑𝑟ଶቇ + ቊ

ℏଶ

2𝑚𝑟ଶ 𝑙(𝑙 + 1) + 𝑉(𝑟)ቋ R(r) = 𝐸R(r) 

−ℏଶ

2𝑚𝑟
𝑑ଶ𝑢
𝑑𝑟ଶ + ቊ

ℏଶ

2𝑚𝑟ଶ 𝑙(𝑙 + 1) + 𝑉(𝑟)ቋ
𝑢(r)

𝑟
= 𝐸

𝑢(r)
𝑟

 

−ℏଶ

2𝑚
𝑑ଶ𝑢
𝑑𝑟ଶ + ቊ

ℏଶ

2𝑚𝑟ଶ 𝑙(𝑙 + 1) + 𝑉(𝑟)ቋ u(r) = 𝐸u(r) 



   
 
 

32 | P a g e  
 

Discrete States of Nucleus 

 −ℏଶ

2𝑚
𝑑ଶ𝑢
𝑑𝑟ଶ +

ℏଶ

2𝑚𝑟ଶ 𝑙(𝑙 + 1)𝑢(r) + 𝑉(𝑟)𝑢(r) = 𝐸𝑢(r) 
(4.9) 

For harmonic oscillator we take 

𝑉(𝑟) =
1
2

𝑘𝑟ଶ =
1
2

𝑚𝜔ଶ𝑟ଶ (4.10) 

Therefore 

−ℏଶ

2𝑚
𝑑ଶ𝑢
𝑑𝑟ଶ +

ℏଶ

2𝑚𝑟ଶ 𝑙(𝑙 + 1)𝑢(r) +
1
2

𝑚𝜔ଶ𝑟ଶ𝑢(r) = 𝐸𝑢(r) 
(4.11) 

Now Put 

𝑥 =
𝑟
𝑎

   𝑜𝑟   𝑟 = 𝑥𝑎   𝑤ℎ𝑒𝑟𝑒   𝑎 = ඨ ℏ
𝑚𝜔

 
(4.12) 

⇒
1
𝑟ଶ =

1
𝑥ଶ𝑎ଶ =

𝑚𝜔
ℏ𝑥ଶ (4.13) 

⇒ 𝑟ଶ = 𝑥ଶ𝑎ଶ =
ℏ𝑥ଶ

𝑚𝜔
 

(4.14) 

⇒
𝑑ଶ𝑢
𝑑𝑟ଶ =

𝑑ଶ𝑢
𝑑(𝑥ଶ𝑎ଶ)

=
𝑑ଶ𝑢
𝑑𝑥ଶ ൬

1
𝑎ଶ൰ = ൬

1
𝑎ଶ൰

𝑑ଶ𝑢
𝑑𝑥ଶ =

𝑚𝜔
ℏ

𝑑ଶ𝑢
𝑑𝑥ଶ 

(4.15) 

Using (4.13),(4.14),(4.15) in Eq.(4.11) We have 

−ℏଶ

2𝑚
𝑚𝜔

ℏ
𝑑ଶ𝑢(𝑥)

𝑑𝑥ଶ +
ℏଶ

2𝑚
𝑚𝜔
ℏ𝑥ଶ 𝑙(𝑙 + 1)𝑢(x) +

1
2

𝑚𝜔ଶ ℏ𝑥ଶ

𝑚𝜔
𝑢(𝑥) = 𝐸𝑢(x) 

൬
−ℏ𝜔

2
൰

𝑑ଶ𝑢
𝑑𝑥ଶ +

𝑙(𝑙 + 1)𝑢
𝑥ଶ (

ℏ𝜔
2

) + 𝑥ଶ𝑢 ൬
ℏ𝜔
2

൰ = 𝐸𝑢 

Or 

𝑑ଶ𝑢
𝑑𝑥ଶ −

𝑙(𝑙 + 1)𝑢
𝑥ଶ − 𝑥ଶ𝑢 =

−𝐸𝑢
ℏఠ
ଶ

 
(4.16) 

Put 
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 𝐸
ℏ𝜔/2

=∈ 

 

(4.17) 

 

𝑑ଶ𝑢
𝑑𝑥ଶ −

𝑙(𝑙 + 1)𝑢
𝑥ଶ − 𝑥ଶu = −∈ 𝑢 

𝑑ଶ𝑢
𝑑𝑥ଶ −

𝑙(𝑙 + 1)𝑢
𝑥ଶ − 𝑥ଶu+∈ 𝑢 = 0 

(4.18) 

We try a solution 

𝑢(𝑥) = 𝑥௟ାଵ𝑒ିఈ௫మ (4.19) 

⇒
𝑑ଶ𝑢
𝑑𝑥ଶ = 𝑥௟ାଷ(4𝛼ଶ)𝑒ିఈ௫మ + 𝑥௟ାଵ{(−2𝛼)(2𝑙 + 3)}𝑒ିఈ௫మ + 𝑥௟ିଵ𝑙(𝑙 + 1)𝑒ିఈ௫మ 

(4.20) 

Using𝑢(𝑥), ௗమ௨
ௗ௫మ in Eq. (4.18) 

𝑥௟ାଷ(4𝛼ଶ)𝑒ିఈ௫మ + 𝑥௟ାଵ{(−2𝛼)(2𝑙 + 3)}𝑒ିఈ௫మ + 𝑥௟ିଵ𝑙(𝑙 + 1)𝑒ିఈ௫మ −
𝑙(𝑙 + 1)

𝑥ଶ 𝑥௟ାଵ𝑒ିఈ௫మ

− 𝑥ଶ𝑥௟ାଵ𝑒ିఈ௫మ +∈ 𝑥௟ାଵ𝑒ିఈ௫మ = 0 

[𝑥௟ାଷ(4𝛼ଶ − 1)+𝑥௟ାଵ{(−2𝛼)(2𝑙 + 3)+∈}+𝑥௟ାଵ{𝑙(𝑙 + 1) − 𝑙(𝑙 + 1)}]𝑒ିఈ௫మ = 0 

𝐴𝑠   𝑒ିఈ௫మ ≠ 0 

𝑥௟ାଷ(4𝛼ଶ − 1)+𝑥௟ାଵ{(−2𝛼)(2𝑙 + 3)+∈} = 0 (4.21) 

Comparing powers of “x” on both sides. We have 

(4𝛼ଶ − 1) = 0    ⇒ 𝛼 =
1
2

 (4.22) 

& 

(−2𝛼)(2𝑙 + 3)+∈= 0 

−2(1/2)(2𝑙 + 3)+∈= 0 

−(2𝑙 + 3)+∈= 0 
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 ∈= 2𝑙 + 3 

Or 

𝐸
ℏ𝜔/2

= 2𝑙 + 3 

𝐸 =
2𝑙 + 3

2
ℏ𝜔 ; 𝑙 = 0,1,2,3 … 

(4.23) 

 

 

Figure 4.1: Nuclear energy levels for harmonic oscillator potential 

 

So simple harmonic oscillator potential was not our good assumption as it fails to explain the 

magic numbers except first three. Let’s try with Infinite Square well potential. 
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 4.2 Shell Model for Infinite Square Well Potential 
We assume that if we pick up one neutron/proton from nucleus, it experiences square well 

potential created by the rest of nucleons. This potential is described as 

𝑉 = 𝑂   𝑓𝑜𝑟    𝑟 < 𝑟௢ 

𝑉 = ∞   𝑓𝑜𝑟    𝑟 > 𝑟௢ 

This is central potential because it does not depend upon θ, φ. Now again from Schrödinger 

Equation in the form of  

ቈ
−ℏଶ

2𝑚 ቊ
1
𝑟ଶ

𝜕
𝜕𝑟

൬𝑟ଶ 𝜕
𝜕𝑟

൰ −
1
𝑟ଶ

𝐿෠ଶ

ℏଶቋ + 𝑉(𝑟)቉ 𝛹 = 𝐸𝛹 
(4.24) 

𝛹(𝑟, θ, φ) =
u(r)

𝑟
𝑌௟

௠(θ, φ) 
(4.25) 

For 𝑟 < 𝑟௢we have  

−ℏଶ

2𝑚
𝑑ଶ𝑢
𝑑𝑟ଶ + ቊ

ℏଶ𝑙(𝑙 + 1)
2𝑚𝑟ଶ ቋ u(r) = 𝐸u(r) 

(4.26) 

Solution of the above equation is Bessel function 

𝑢 = 𝛾𝑗௟(𝑘𝑟) (4.27) 

Where  

𝑗௟(𝑘𝑟௢) = 0 ; 𝑘 = ඨ2𝑚𝐸
ℏଶ  

(4.28) 

Here 𝑚 is the mass of neutron/proton 

𝑓𝑜𝑟 𝑙 = 0      𝑠 − 𝑠𝑡𝑎𝑡𝑒      𝑛 = 1, 2, 3 … 

𝑓𝑜𝑟 𝑙 = 1      𝑝 − 𝑠𝑡𝑎𝑡𝑒      𝑛 = 1, 2, 3 … 

𝑓𝑜𝑟 𝑙 = 2      𝑑 − 𝑠𝑡𝑎𝑡𝑒      𝑛 = 1, 2, 3 … 
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Figure 4.2: Nuclear energy levels for Infinite Square well potential 

 

We are making a mistake, we are trying to explain magic numbers with infinite potentials which 

are both unrealistic as we see neutron/proton separation energies are finite also nuclear potential 

is not like sharp edges as we have taken in infinite square well potential that’s why both 

potentials could not explain the magic numbers completely. 

 

4.3 Shell Model for Woods-Saxon Potential 
We make an attempt with this nuclear potential which is more realistic as compared to the 

infinite square well potential and harmonic oscillator potential because this is finite potential 

having round edges. Mathematically it can be expressed as 
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 𝑉 =
−𝑉௢

1 + 𝑒(௥ିோ)/௔ (4.29) 

where 𝑉௢ = 50𝑀𝑒𝑉, 𝑎 = .42𝑓𝑚 , 𝑅 = 𝑅ை𝐴ଵ/ଷ 

This potential was also tried to explain the magic numbers but all in vain. Again Scientists 

brought the idea of spin-orbit coupling from atomic physics to explain magic numbers 

theoretically. 

𝐽 = 𝐿ሬ⃗ + 𝑆 (4.30) 

𝐽ଶ = 𝐿ଶ + 𝑆ଶ + 2𝐿ሬ⃗ . 𝑆 

Or 

𝐿ሬ⃗ . 𝑆 =
𝐽ଶ − 𝐿ଶ − 𝑆ଶ

2
 

Taking average 

〈𝐿ሬ⃗ . 𝑆〉 =
〈𝐽ଶ − 𝐿ଶ − 𝑆ଶ〉

2
 

(4.31) 

If   𝐿ሬ⃗ = 0 , 𝐽 = 0 + ଵ
ଶ

= ଵ
ଶ
 

If   𝐿ሬ⃗ ≠ 0 , 𝐽 = 𝐿ሬ⃗ + ଵ
ଶ

 , 𝐿ሬ⃗ − ଵ
ଶ
 

For  𝐽 = 𝐿ሬ⃗ + ଵ
ଶ
 

〈𝐿ሬ⃗ . 𝑆〉 =
〈𝐽ଶ − 𝐿ଶ − 𝑆ଶ〉

2
 

=
ቀ𝑙 + ଵ

ଶ
ቁ ቀ𝑙 + ଷ

ଶ
ቁ ℏଶ − 𝑙(𝑙 + 1)ℏଶ − ଵ

ଶ
(ଵ

ଶ
+ 1)ℏଶ

2
 

=
ℏଶ

2
൜𝑙ଶ + 2𝑙 +

3
4

− 𝑙ଶ − 𝑙 −
3
4

ൠ 

〈𝐿ሬ⃗ . 𝑆〉 =
𝑙ℏଶ

2
 

(4.32) 
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 For  𝐽 = 𝐿ሬ⃗ − ଵ
ଶ
 

〈𝐿ሬ⃗ . 𝑆〉 =
〈𝐽ଶ − 𝐿ଶ − 𝑆ଶ〉

2
 

=
ቀ𝑙 + ଵ

ଶ
ቁ ቀ𝑙 − ଵ

ଶ
ቁ ℏଶ − 𝑙(𝑙 + 1)ℏଶ − ଵ

ଶ
(ଵ

ଶ
+ 1)ℏଶ

2
 

=
ℏଶ

2
൜𝑙ଶ −

1
4

− 𝑙ଶ − 𝑙 −
3
4

ൠ 

〈𝐿ሬ⃗ . 𝑆〉 =
−ℏଶ

2
{𝑙 + 1} 

(4.33) 

Splittingℏమ

ଶ
{2𝑙 + 1} 

 

Figure 4.3: Woods-Saxon Potential 
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In the previous chapter we have learnt in detail that nucleus also possesses the definite energy 

level being a bound state. We want to study the changes in these energy levels as it is subjected 

to a laser. As the wavelength of laser is not comparable to the size of the nucleus, therefore it is 

not possible for us to probe the nucleus with the help of modern laser facilities. But we can 

interact with the nucleus indirectly that if we shine laser upon a Hydroden-like system, due to the 

oscillation of the electron in laser field nucleus experiences periodic electric field due to its 

oscillation. We will study how this field changes the energy levels of the nucleus. 

As we have established the formulism for AC Stark effect in chapter 3 at atomic level.   

∆𝐸௔തതത = −
1
2
Ԑଶതതത(𝑡)𝛼൫𝛾௃𝑀௝, 𝜔൯ 

 

(5.1) 

∆𝐸௔തതത = −
1
2
Ԑଶതതത(𝑡) ቎2෍

{𝐸ఊʹ௃ʹ − 𝐸ఊ௃}หൻ𝛾ʹ𝐽ʹ𝑀௝ห𝐷௭ห𝛾𝐽𝑀௝ൿห
ଶ

(𝐸ఊʹ௃ʹ − 𝐸ఊ௃)ଶ − ℏଶ𝜔ଶ

ʹ

ఊʹ௃ʹ

቏ 

 

 

∆𝐸௔തതത = −Ԑଶതതത(𝑡)෍
൛𝐸ఊʹ௃ʹ − 𝐸ఊ௃ൟหൻ𝛾ʹ𝐽ʹ𝑀௝ห𝐷௭ห𝛾𝐽𝑀௝ൿห

ଶ

൫𝐸ఊʹ௃ʹ − 𝐸ఊ௃൯
ଶ − ℏଶ𝜔ଶ

ʹ

ఊʹ௃ʹ

 

 

(5.2) 

Where 𝛼(𝛾௃𝑀௝, 𝜔) is dynamic polarizability given by 

𝛼൫𝛾௃𝑀௝, 𝜔൯ = 2෍
൛𝐸ఊʹ௃ʹ − 𝐸ఊ௃ൟหൻ𝛾ʹ𝐽ʹ𝑀௝ห𝐷௭ห𝛾𝐽𝑀௝ൿห

ଶ

൫𝐸ఊʹ௃ʹ − 𝐸ఊ௃൯
ଶ − ℏଶ𝜔ଶ

ʹ

ఊʹ௃ʹ

 

 

(5.3) 
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 5.1 Electric field experienced by nucleus under the action of laser beam 
The electric field of laser can be supposed in the form in the dipole approximation 

Ԑ(𝑡) = Ԑ௢𝑒ି௜ఠ௧ 

 

(5.4) 

Equation of motion of electron in the presence of electric field is 

𝑚
𝑑𝑣
𝑑𝑡

= −𝑒Ԑ(𝑡) 

𝑚
𝑑
𝑑𝑡

𝑣௢𝑒ି௜ఠ௧ = −𝑒Ԑ(𝑡) 

𝑚𝑣(−𝑖𝜔) = −𝑒Ԑ(𝑡) 

𝑣(𝑡, 𝜔) =
𝑒Ԑ(𝑡)
𝑖𝑚𝜔

 

𝑑 ∝
𝑑𝑡

=
𝑒Ԑ(𝑡)
𝑖𝑚𝜔

 

𝑑
𝑑𝑡

∝௢ 𝑒ି௜ఠ௧) =
𝑒Ԑ(𝑡)
𝑖𝑚𝜔

 

∝ (−𝑖𝜔) =
𝑒Ԑ(𝑡)
𝑖𝑚𝜔

 

∝ (𝑡, 𝜔) =
𝑒Ԑ(𝑡)
𝑚𝜔ଶ  

(5.5) 

This is the oscillating amplitude of electron. It can also be written as [13] 

∝ (𝑡, 𝜔) =
𝑒Ԑ௢𝑆𝑖𝑛𝜔𝑡

𝑚(𝜔௢
ଶ − 𝜔ଶ)

 

 

(5.6) 

where 𝜔 is the frequency of laser and 𝜔௢ is the frequency of oscillating electron.  

In laser field, the force between electron and proton can be written as the function of “t” and 

"𝜔"where 𝜔is the frequency of laser. 
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 The field experienced by nucleus is 

Ԑ(𝑡, 𝜔) =
𝑘𝑒

𝑟ଶ(𝑡, 𝜔)
 

(5.7) 

When electron at maximum distance from nucleus 

Ԑଵ(𝑡, 𝜔) =
𝑘𝑒

{𝑟௢+∝ (𝑡, 𝜔)}ଶ
 

(5.8) 

When electron at minimum distance from nucleus 

Ԑଶ(𝑡, 𝜔) =
𝑘𝑒

{𝑟௢−∝ (𝑡, 𝜔)}ଶ
 

(5.9) 

where 𝑟௢is Bohr radius. 

The average field is 

Ԑ௔௩(𝑡, 𝜔) =
Ԑଵ + Ԑଶ

2
 

Ԑ௔௩(𝑡, 𝜔) = −
1
2 ൤

𝑘𝑒
{𝑟௢−∝ (𝑡, 𝜔)}ଶ

+
𝑘𝑒

{𝑟௢+∝ (𝑡, 𝜔)}ଶ൨
 

(5.10) 

This is average electric field experienced by nucleus due to the electron oscillation under the 

action of laser beam. Put this value in Eq(5.2) 

∆𝐸௔തതത = − ൜−
1
2
൤

𝑘𝑒
{𝑟௢−∝ (𝑡, 𝜔)}ଶ

+
𝑘𝑒

{𝑟௢+∝ (𝑡, 𝜔)}ଶ
൨ൠ

ଶ

෍
{𝐸ఊʹ௃ʹ − 𝐸ఊ௃}หൻ𝛾ʹ𝐽ʹ𝑀௝ห𝐷௭ห𝛾𝐽𝑀௝ൿห

ଶ

(𝐸ఊʹ௃ʹ − 𝐸ఊ௃)ଶ − ℏଶ𝜔ଶ

ʹ

ఊʹ௃ʹ

 

∆𝐸௔തതത = −
1
4
൤

𝑘𝑒
{𝑟௢−∝ (𝑡, 𝜔)}ଶ

+
𝑘𝑒

{𝑟௢+∝ (𝑡, 𝜔)}ଶ
൨
ଶ

෍
{𝐸ఊʹ௃ʹ − 𝐸ఊ௃}หൻ𝛾ʹ𝐽ʹ𝑀௝ห𝐷௭ห𝛾𝐽𝑀௝ൿห

ଶ

(𝐸ఊʹ௃ʹ − 𝐸ఊ௃)ଶ − ℏଶ𝜔ଶ

ʹ

ఊʹ௃ʹ

 

Using ∝ (𝑡, 𝜔) = ௘Ԑ(௧)
௠൫ఠ೚

మିఠమ൯
 

∆𝐸௔തതത = −
1
4
⎣
⎢
⎢
⎡ 𝑘𝑒

൜𝑟௢ −
௘Ԑ೚ௌ௜௡ఠ௧
௠൫ఠ೚

మିఠమ൯
ൠ
ଶ +

𝑘𝑒

൜𝑟௢ +
௘Ԑ೚ௌ௜௡ఠ௧
௠൫ఠ೚

మିఠమ൯
ൠ
ଶ

⎦
⎥
⎥
⎤
ଶ

෍
{𝐸ఊʹ௃ʹ − 𝐸ఊ௃}หൻ𝛾ʹ𝐽ʹ𝑀௝ห𝐷௭ห𝛾𝐽𝑀௝ൿห

ଶ

(𝐸ఊʹ௃ʹ − 𝐸ఊ௃)ଶ − ℏଶ𝜔ଶ

ʹ

ఊʹ௃ʹ
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 Now the expectation value of electric dipole moment of H-atom is 

ൻ𝛾ʹ𝐽ʹ𝑀௝ห𝐷௭ห𝛾𝐽𝑀௝ൿ = 𝑒𝑟௢ 

Therefore 

∆𝐸௔തതത = −
1
4
⎣
⎢
⎢
⎡ 𝑘𝑒

൜𝑟௢ −
௘Ԑ೚ௌ௜௡ఠ௧
௠൫ఠ೚

మିఠమ൯
ൠ
ଶ +

𝑘𝑒

൜𝑟௢ +
௘Ԑ೚ௌ௜௡ఠ௧
௠൫ఠ೚

మିఠమ൯
ൠ
ଶ

⎦
⎥
⎥
⎤
ଶ

෍
{𝐸ఊʹ௃ʹ − 𝐸ఊ௃}(𝑒𝑟௢)ଶ

(𝐸ఊʹ௃ʹ − 𝐸ఊ௃)ଶ − ℏଶ𝜔ଶ

ʹ

ఊʹ௃ʹ

 

In atomic units 

𝑘 = 𝑚 = ℏ = 𝑒 = 𝑟௢ = 1 

∆𝐸௔തതത = −
1
4
⎣
⎢
⎢
⎡ 1

൜1 − Ԑ೚ௌ௜௡ఠ௧
൫ఠ೚

మିఠమ൯
ൠ
ଶ +

1

൜𝑟௢ +
Ԑ೚ௌ௜௡ఠ௧
൫ఠ೚

మିఠమ൯
ൠ
ଶ

⎦
⎥
⎥
⎤
ଶ

෍
𝐸ఊʹ௃ʹ − 𝐸ఊ௃

൫𝐸ఊʹ௃ʹ − 𝐸ఊ௃൯
ଶ − 𝜔ଶ

ʹ

ఊʹ௃ʹ

 

 

(5.11) 

 

5.2 Restrictions on laser parameters 
We can vary the laser parameters Ԑ௢ and 𝜔 such that oscillating electron neither collide with the 

nucleus nor ionize. Necessary condition to avoid electron-nucleus collision is ∝< 𝑟௢where 𝑟௢the 

Bohr radius and∝ is the amplitude of oscillation of the electron. So we can adjust Ԑ௢ and 𝜔 such 

that oscillating amplitude do not exceed the Bohr radius that is 

∝< 𝑟௢ 

Or 

Ԑ௢𝑆𝑖𝑛𝜔𝑡
(𝜔௢

ଶ − 𝜔ଶ)
< 1 (5.12) 

The ionization energy of H-atom is 0.499a.u. So we bound our self to take 𝜔 less than 0.499a.u. 

to prevent system to ionize that is 

𝜔 < 0.499𝑎. 𝑢 (5.13) 

The system will not be ionized. 
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 There is another important thing to keep in mind that our dealing is purely non-relativistic, so if 

the relativistic factor 

𝑞 =
Ԑ௢
𝑒𝑚𝑐

< 1 

Or 

𝑞 =
Ԑ௢
137

< 1 (5.14) 

 

We may ignore all relativistic effects in the motion of electron. 

Now let’s see the Stark splitting for two nuclear states of H-atom[14] 

𝐸ఊʹ௃ʹ − 𝐸ఊ௃ = 800𝑘𝑒𝑉 

=
800𝑥10ଷ

27.214
𝑎. 𝑢 

𝐸ఊʹ௃ʹ − 𝐸ఊ௃ = 2.94 ∗ 10ସ𝑎. 𝑢 (5.15) 

Eq.(5.11) reduces to 

∆𝐸௔തതത = −
1
4
⎣
⎢
⎢
⎡ 1

൜1 − Ԑ೚ௌ௜௡ఠ௧
൫ఠ೚

మିఠమ൯
ൠ
ଶ +

1

൜1 + Ԑ೚ௌ௜௡ఠ௧
൫ఠ೚

మିఠమ൯
ൠ
ଶ

⎦
⎥
⎥
⎤
ଶ

ቊ
2.94 ∗ 10ସ

(2.94𝑥10ସ)ଶ − 𝜔ଶቋ 

 

(5.15) 

 

 

 

 

5.3 Discussion on results 
Graph 5.1 shows the variation of Stark shift when we change the frequency of incident laser 
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Figure 5.1: Variation of stark shift with frequency 

 

It is clear from the graph that Stark shift increases as we increase laser frequency because when 

we increase frequency, the number of interactions per second of electron with nucleus increases 

hence the electric field per second experienced by the nucleus increases due to which shift in the 

energy levels in H-atom nucleus increases. In other words we can say that electron remains in 

contact with the nucleus for greater time therefore there is increase in Stark shift at higher 

frequency. 

When we fix the frequency and vary the strength of electric field of external laser, electron will 

come more close to the nucleus and it experiences greater magnitude of electric field hence Stark 

shift again increases as shown in the figure 5.2 
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Figure 5.2: Variation of stark shift with electric field strength 
 

If we keep frequency and field strength of the laser unchanged and vary the laser time, figure 5.3 

shows that Stark shift is oscillating about a fixed value as we change laser time from 1fs to 5fs. 

By changing of laser time we mean that we have not changed the laser but we have increased the 

number of active cycles of the laserand rest of the cycles are inactive or silent. 
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Figure 5.3: Variation of stark shift with time 

 

The relation 𝐸(𝑡) = 𝐸ை𝑆𝑖𝑛𝜔𝑡 shows that with the increase of time, the electric field 𝐸(𝑡) will 

oscillate hence there are sinusoidal oscillations of Stark shift in this case. 

  



   
 
 
  

47 | P a g e  
 

Nuclear Stark Effect 

  

Referances ; 

[1] Ch. Aldarmaa1, L. Khenmedekh and O. Lkhagva, International Journal of Mathematical 

Archive-3(7), (2012) 

[2] H. G. Muller, H. B. van Linden van den Heuvell, P. Agostini, G. Petite, A. Antonetti, M. 

Franco, and A. Migus,Phys. Rev. Lett. 60, 565(1987). 

[3] R. R. Freeman, P. H. Bucksbaum, H. Milchberg, S. Darack, D. Schumacher, and M. E. 

Geusic, Phys. Rev. Lett. 59, 1092 (1987). 

[4] L. V. keldysh, Sov. Phys. J.E.T.P, 20, 1307 (1965). 

[5] R. W. Boyd, Non-linear Optics, Academic Press, London, UK (2008). 

[6] S. Augst, D. Strickland, D. D. Meyerhofer, S. L. Chin, and J. H. Eberly, Phys. Rev. Lett. 63, 

2212 (1989).  

[7] P. A. Franken, A. E. Hill, C.W. Peters and G. Weinreich, Phys. Rev. Lett. 7, 118 (1961) 

[8] H. Hu, Multi-photon creation and single-photon annihilation of electron-positron pairs, 

Thesis (PhD), University of Heidelberg, Germany, (2011). 

[9] N. H. Burnett et al., Appl. Phys. Lett., 31, 172 (1977). 

[10] P. M. Paul, E. S. Toma,  P. Breger,  F. Augé Ph. Balcou,  H. G. Muller,  P. Agostini, 
Science(2001) 
 
[11] A. J. Kox, Ann. Phys. (Berlin) 525, No. 5, A63–A66 (2013).  

[12] D. J. Griffith, "Introduction to Quantum Mechanics", Pearson Prentice Hall(2005).  

[13] Y. I. Salamin et al. phys. Rep. 417, 41(2006). 

[14] J. E. Evans, C. W. Malich, and J. R. Risser, Phys. Rev. 75, 1161(1949). 

http://www.sciencemag.org/search?author1=P.+M.+Paul&sortspec=date&submit=Submit
http://www.sciencemag.org/search?author1=E.+S.+Toma&sortspec=date&submit=Submit
http://www.sciencemag.org/search?author1=P.+Breger&sortspec=date&submit=Submit
http://www.sciencemag.org/search?author1=F.+Aug%C3%A9&sortspec=date&submit=Submit
http://www.sciencemag.org/search?author1=Ph.+Balcou&sortspec=date&submit=Submit
http://www.sciencemag.org/search?author1=H.+G.+Muller&sortspec=date&submit=Submit

