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Improving the estimation 
of environment parameters 
via a two‑qubit scheme
Ali Raza Mirza 1,2 & Adam Zaman Chaudhry 1*

We demonstrate how using two qubits can drastically improve the estimation of environment 
parameters compared to using only a single qubit. The two qubits are coupled to a common harmonic 
oscillator environment, and the properties of the environment are imprinted upon the dynamics of 
the two qubits. The reduced density matrix of only one of these qubits contains a decoherence factor 
and an additional factor taking into account the indirect interaction induced between the qubits due 
to the interaction with their common environment. This additional factor can drastically improve 
the estimation of the environment parameters, as quantified by the quantum Fisher information. 
In particular, we investigate the estimation of the cutoff frequency, the coupling strength, and the 
temperature using our two-qubit scheme compared to simply using a single qubit. We find that the 
precision of the estimates can be improved by orders of magnitude.

Open quantum systems have attracted great interest over the past few decades as they have an important role in 
developing modern quantum technologies1,2. To understand quantum dynamics properly, the effect of the envi-
ronment must be taken into account as every quantum system inevitably interacts with its environment, leading 
to decoherence3,4. Analyzing the effect of decoherence entails knowing parameters such as the system-environ-
ment coupling strength and the environment temperature. One useful method to measure these parameters is 
to consider a quantum probe (a small and controllable quantum system) interacting with its environment5–22. 
Once the dynamics of the probe are obtained, measurements on the probe allow us to estimate several proper-
ties associated with the environment. The precision of these estimates is encapsulated in the quantum Fisher 
information (QFI)23–32. To minimize the error in the estimates, as dictated by the Cramer–Rao bound, one needs 
to maximize the QFI.

To date, many efforts have been put forward to estimate the environment parameters by using single-qubit 
and two-qubit quantum probes8,14,20,21,33. In particular, the focus has been on estimating the parameters of a 
harmonic oscillator environment via a single-qubit probe, taking the initial probe-environment state to be a 
simple product state. Significantly, it has been argued that, compared to a single-qubit probe, using a two-qubit 
probe is largely not beneficial14. In this paper, we argue on the contrary by using a different scheme. Rather than 
performing measurements on two qubits to deduce the environment parameters, we show that the QFI can 
be drastically increased if we couple two qubits to their common environment but perform measurements on 
only one of them. In other words, we trace out one of the qubits. The common environment induces an indirect 
interaction between the two qubits comprising the probe, and it is this indirect interaction, which depends 
on the environment parameters, that leads to the increase in the QFI. Moreover, if the environment is such 
that the probe-environment interaction is strong, then the initial probe-environment correlations can become 
important34–65. In this regard, it has been recently shown that these initial probe-environment correlations can 
also drastically increase the QFI66. In this spirit, we also take the initial correlations into account to show that, 
besides the indirect interaction, the initial correlations can further increase the QFI. Note that while we trace 
out one qubit, we still consider our probe to be a two-qubit quantum probe, as the presence of the second qubit 
is essential to increase the QFI drastically.

We start the presentation of our scheme by analyzing the dynamics of the two-qubit quantum probe interact-
ing with a common harmonic oscillator environment. Assuming relaxation timescales are much longer than the 
dephasing timescales, we can ignore dissipation effects; that is, we consider pure dephasing. We allow our system 
and the environment to interact until they achieve a joint thermal equilibrium state. A projective measurement 
is then performed on the probe to prepare the initial probe state. After that, the two-qubit probe interacts with 
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the environment. We then perform a partial trace over the environment and the second qubit to obtain a 2× 2 
density matrix describing the dynamics of one qubit only. This density matrix contains the effect of decoherence, 
the initial correlations, and the indirect interaction between the two qubits. With this density matrix obtained, we 
work out the QFI, which is obviously a function of the interaction time between the probe and the environment. 
The idea is to choose this interaction time to maximize the QFI. We conclusively show that the corresponding 
maximum QFI can be surprisingly much greater than the QFI obtained with a single-qubit probe. We emphasize 
that this is not simply an increase in the QFI via a simple scaling factor (such as a doubling of the QFI); rather, 
the behavior of the QFI qualitatively changes due to the presence of the indirect interaction.

Results
The model and its dynamics
We consider two qubits undergoing decoherence via their interaction with a common harmonic oscillator envi-
ronment. The dynamics of our two-qubit system can be described by the Hamiltonian H = HS +HE +HSE 
with (we take � = 1 throughout)67

Here σ (1)
z  and σ (2)

z  are the usual Pauli spin operators for the two qubits with ω0 the energy difference. HE is the 
harmonic oscillator environment Hamiltonian with the usual creation and annihilation operators (we have 
dropped the zero point energy for convenience), while HSE corresponds to the probe-environment interaction. 
Notice that any dissipative effects have been ignored; this can be justified because, generally, dissipation timescales 
are significantly longer than decoherence times4,8,14. Moreover, we have ignored any direct qubit-qubit interaction 
term; this is a common assumption made in studies of the effect of a common environment14,68–72. To obtain the 
dynamics of the two qubits, it is convenient to first transform our Hamiltonian to an interaction picture via the 
unitary operator U0(t) = e−i(HE+HS)t . We then obtain HSE(t) =

(
σ
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z + σ

(2)
z

)∑
r
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r e
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 . 

Using the Magnus expansion, this leads to the total unitary time-evolution operator (see the “Methods” section 
for the derivation)

with αr(t) =
2gr(1−eiωr t)

ωr
 , and �(t) =

∑
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ω2
r
[sin(ωr t)− ωr t] . The reduced density operator of the two-qubit 

probe is obtained via ρS(t) = TrE
{
U(t)ρ(0)U†(t)

}
 . It is useful to express this reduced density operator in the 

eigenbasis of σ (1)
z  and σ (2)

z , that is, |k, l� , where σ (1)
z |k, l� = k|k, l� and σ (2)

z |k, l� = l|k, l� , with k, l = ±1 . The matrix 
elements of the two-qubit density matrix are then

with Pkl,k′l′ ≡ |k, l��k′, l′|,Rkl,k′ l′(t) =
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2
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)
αr(t) . To make fur-

ther progress, we now assume that the total state is a simple product state with the two-qubit state being ρS(0) and 
the environment in the thermal equilibrium state ρE = e−βHE

ZE

(
here the partition function is ZE = TrE

{
e−βHE

})
 . 

That is, ρ(0) = ρS(0)⊗ ρE . The final state of the two-qubit probe is then found to be (see the “Methods” section)

Note that here Ŵ(t) =
∑

r
4|gr |2
ω2
r
[1− cos(ωr t)] coth

(
βωr
2

)
 describes decoherence. In contrast, �(t) describes the 

indirect interaction between the qubits due to the interaction with the common environment. Since we are 
considering only decoherence, it is natural to take the initial state to be ‘pointing up’ along the x-axis, that is, 
ρS(0) = |+,+��+,+|, where σx|+� = |+� . Also, the effect of the environment on the system can be encapsulated 
by the spectral density of environment J(ω) . This function effectively converts a sum over the environment modes 
to an integral via 

∑
r 4|gr |2f (ωr) →

∫∞
0 dω J(ω)f (ω) . Here, we consider the spectral density to be of the form 

J(ω) = G ωs

ωs−1
c

e−
ω
ωc  , where G is the coupling strength, ωc is the cutoff frequency, and s is the Ohmicity parameter 

with s < 1 , s = 1 and s > 1 representing sub-Ohmic, Ohmic, and super-Ohmic spectral densities respectively3. 
Finally, by taking a partial trace over the second qubit, the state of the first qubit alone is obtained as
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with Ŵun(t) =
∫∞
0

J(ω)
ω2 [1− cos (ωt)] coth

(
βω
2

)
dω and �(t) =

∫∞
0

J(ω)
ω2 [sin (ωt)− ωt]dω . Note that we have 

added the subscript ‘un’ to emphasize that this is the decoherence factor when we have an uncorrelated initial 
state. Now, it is useful to split Ŵun(t) into temperature-dependent and temperature-independent parts, that is, 
Ŵun(t) = Ŵvac(t)+ Ŵth(t) . At zero temperature, Ŵth(t) = 0 . On the other hand

where Ŵ̄ is the usual gamma function defined as Ŵ̄[z] =
∫∞
0 tz−1e−tdt.

We now consider taking into account the effect of the initial system-environment correlations. We assume 
the two qubits and their common environment have achieved a joint thermal equilibrium state. After that, at 
time t = 0 , we perform a projective measurement on the system only to prepare the desired initial state of the 
probe |ψ� . The total system-environment initial state is then written as

where Z = TrS,E
{
e−βH

}
 is the total partition function. The two-qubit probe’s subsequent dynamics are discussed 

in detail in the “Methods” section. Having worked these out, we once again obtain the state of the first qubit only 
by taking a partial trace over the second qubit. We write the final result as

where ξ(t) = ω0t + χ(t) . Again, Ŵ(t) incorporates the decoherence effect of the environment, while �(t) 
captures the indirect interaction. Moreover, the effect of the initial correlations emerges as an effective level 
shift χ(t) as well as a modification of the decoherence factor. In particular, the decoherence factor is now 
Ŵ(t) = Ŵun(t)+ Ŵcorr(t), with

while the effective level shift is χ(t) = tan−1
[
b(t)
a(t)

]
 . Here we have defined the time-dependent coefficients 

a(t) = 1+ eβC cosh (βω0) cos[2φ(t)] and b(t) = eβC sinh (βω0) sin[2φ(t)] , with

and C =
∑

r
4|gr |2
ωr

 . Note that we can get back the state in Eq. (4) if we set χ(t) = Ŵcorr(t) = 0 in Eq. (7).

The quantum Fisher information
With the dynamics at hand, both with and without the initial correlations, we now move to calculate the quan-
tum Fisher information (QFI). The QFI quantifies the precision with which a general environment parameter x 
can be estimated73. It can be shown that the QFI is related to the Cramer–Rao bound—the greater the QFI, the 
greater our precision of the estimate. The general expression for the QFI is given by

where |ρn� is the nth eigenstate of our reduced single-qubit state and ρn is the corresponding eigenvalue. For the 
evaluated single qubit 2× 2 matrix, it is straightforward to calculate the eigenvalues and eigenstates. We find 
that ρ1 = 1

2 [1− F(t)] and ρ2 = 1
2 [1+ F(t)] with F(t) = cos [�(t)]e−Ŵ(t) . The corresponding eigenstates are

where |+1� and |−1� being the eigenstates of σz . Now (∂xρ1)2 = (∂xρ2)
2 = 1

4 e
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2. Cal-
culating also the derivatives of the eigenstates and substituting in Eq. (10), the QFI comes out to be

This expression gives the QFI for our two-qubit scheme where we take the initial correlations into account, and 
it reduces to the expression for a single-qubit case by setting � = 066. If we start with the simple product state 
without taking the initial correlations into account, then we can obtain the QFI by setting χ = 0 and replacing 
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Ŵ by Ŵun in Eq. (12). Note also that the presence of a direct qubit-qubit interaction term of the form κ2 σ
(1)
z σ

(2)
z  

simply leads to �(t) being replaced by �(t)+ κ in Eq. (12). Our results should then not change appreciably 
unless κ becomes comparable to the indirect interaction. Before moving on to concrete examples of estimating 
the environment parameters, it is already clear that the addition of the indirect qubit-qubit interaction appears 
highly promising in increasing the QFI.

Estimation of the cutoff frequency of the environment
As the first example of applying our expression of the QFI [see Eq. (12)], we now look in detail at estimating the 
environment’s cutoff frequency ωc . We first note that (at zero temperature)

Using these in Eq. (12), we obtain the quantum Fisher information to estimate the cutoff frequency as a function 
of time. We then optimize this QFI over the interaction time to find the maximum possible QFI. For example, 
one could plot the QFI as a function of time for different values of ωc and thereby note the maximum value of 
QFI for each value of ωc . We can then investigate the behavior of this optimal QFI as a function of the cutoff 
frequency. This behavior is illustrated in Fig. 1. The main figure shows the typical behavior of the QFI for esti-
mating the cutoff frequency for a sub-Ohmic environment using our two-qubit scheme, both with and without 
including the effect of the initial correlations. It is clear that in this weak coupling strength regime, the effect of 
the initial correlations is insignificant, as expected since the black, solid curve overlaps with the red dotted curve. 
The inset shows the optimized QFI if we use a single qubit interacting with the environment with the same set of 
parameters. What is most notable is the drastic increase of the QFI with our two-qubit scheme compared to using 
a single qubit—it is a three orders of magnitude increase, demonstrating the advantage of using our two-qubit 
scheme remarkably. This is far beyond what one would naively expect when using a two-qubit probe as compared 
to a single-qubit probe. Moreover, we are still performing measurements on a single qubit and computing the 
QFI via a single-qubit density matrix. The increase is simply because of the indirect qubit-qubit interaction (the 
� term); this term is, of course, completely absent with a single-qubit probe. Interestingly, if we increase the 
coupling strength G, our two-qubit scheme improves the QFI, although the increase is not as drastic as in the 
case of weak coupling (see Fig. 2)—the increased decoherence leads to smaller values of the QFI.

We also investigated an Ohmic environment (see Fig. 3). For strong coupling, we notice the overlap of red 
circles (using the simple single-qubit probe with correlations included) and the solid black curve (using our 
two-qubit scheme with the effect of the correlations included), thereby indicating that the two schemes perform 
similarly for strong coupling with an Ohmic environment. However, the situation drastically changes for weaker 
coupling. As one can see from the inset, very surprisingly, the QFI with our two-qubit scheme keeps increasing as 
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Figure 1.   The main figure shows the behavior of the optimized QFI using our two-qubit scheme for estimating 
the cutoff frequency as a function of the cutoff frequency. The black, solid curve is obtained by including the 
effects of the initial correlations, while the dotted, red curve ignores these effects. We have taken ω0 = 1 and 
the rest of the parameters are G = 0.01 , s = 0.5 , and the temperature T = 0 . The inset shows the optimized 
QFI if we use a single qubit or spin (without any second qubit), both with (solid, blue curve) and without initial 
correlations (dashed, magenta curve). The parameters used are the same as the main figure.
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the qubits interact with their environment. The decoherence is now smaller, and the indirect interaction leads to 
a buildup of the information gained about the environment. This is in complete contrast with the QFI obtained 
with a single-qubit probe, which is bounded (see the left inset). The continuous increase in the QFI is also simple 
to explain mathematically. From the definitions of Ŵ(t) and �(t) , and the expressions given in Eq. (13), it is easy 
to see that for the Ohmic environment at long times, ∂χ

∂ωc
→ 0 , ∂Ŵ

∂ωc
→ G

ωc
 , ∂�
∂ωc

→ Gt , sin� → sin[G( π2 − ωct)] , 
and e2Ŵ → (ωct)

2G . It is then clear that at long times, using Eq. (12), the temporal dependence of the quantum 
Fisher information is captured by sin2[G( π2 − ωct)]t2(1−G) . This means that the quantum Fisher information 
for the Ohmic environment will keep on increasing for G < 1 , while it will not for G > 1 . This is precisely in 
agreement with what we have observed in Fig. 3. With a super-Ohmic environment (see Fig. 4), the indirect 
inter-qubit interaction (the � term) again plays a vital role in leading to a continuous increase in the QFI. 
Moreover, with the super-Ohmic environment, the buildup of QFI with the two-qubit scheme can persist even 
in the strong coupling regime.

Figure 2.   Similar to Fig. 1, the main figure shows the behavior of the optimized quantum Fisher information 
for estimating the cutoff frequency with our two-qubit probe scheme. In contrast, the inset shows the optimized 
quantum Fisher information if we used only a single-qubit probe. Here G = 1 , while the rest of the parameters 
are the same as Fig. 1.

Figure 3.   Comparison of the optimized QFI for estimating ωc for a single-qubit probe versus our two-qubit 
scheme for an Ohmic environment (s = 1) . In the main plot, the solid black (with initial correlations) and 
dashed black (without initial correlations) curves show the optimized QFI for the two-qubit scheme. In contrast, 
the red circles (with initial correlations) and dotted red curve (without initial correlations) show the optimized 
QFI for the single-qubit probe. In the top-left inset, the optimized QFI is plotted with (blue solid curve) and 
without (dashed magenta curve) initial correlations for the single-qubit probe ( G = 0.1 ). In contrast, in the 
top-right inset, the QFI is plotted with (black solid curve) and without (dashed red curve) initial correlations 
( G = 0.1 and ωc = 2 ) for the two-qubit scheme (these curves overlap). A qualitatively similar increase in Fisher 
information is observed with G = 0.1 for other values of the cutoff frequency ωc . Other parameters are the same 
as Fig. 1.
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Estimation of the system‑environment coupling strength
We now consider estimating the coupling strength G. Again, we use the expression in Eq. (12) and optimize it 
over the interaction time to get optimized QFI. We now need the derivatives (evaluated at zero temperature)

We first compare the optimized QFI for estimating the coupling strength G obtained using our two-qubit scheme 
with the QFI obtained using a single-qubit probe for a sub-Ohmic environment. Results are illustrated in Fig. 5, 
where we have shown the behavior of the optimized QFI versus the coupling strength G using a single-qubit 
probe both with and without incorporating the effect of the initial correlations—these are shown with the dashed, 
magenta curve and the circular markers respectively. We have also shown the QFI with our two-qubit scheme, 
both with (solid, black curve) and without (the asterisk markers) including the initial correlations. At least three 
points should be noted here. First, if we ignore the initial correlations, there is little difference between the two 
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Figure 4.   Behavior of the optimized QFI with a super-Ohmic ( s = 2 ) environment. The left plot shows the 
optimized QFI for estimating ωc with (solid blue curve) and without (dashed magenta curve) initial correlations 
using a single-qubit probe. The right plot shows the optimized QFI using our two-qubit scheme, with (solid 
black curve) and without (dashed red curve) initial correlations (here ωc = 2 ). The inset zooms in on the 
behavior of the optimized QFI for small values of time. Similar qualitative behavior is observed for other values 
of ωc . We have set ω0 = 1 , with the environment coupling strength G = 2 and temperature T = 0.

Figure 5.   Behavior of optimized QFI versus coupling strength G obtained using a single qubit (or spin) probe 
with (dashed, magenta curve) and without (magenta circles) initial correlations, as well as with our two-qubit 
scheme (the solid, black curve is with initial correlations, while the black asterisks show the QFI without initial 
correlations). Here, we have considered a sub-Ohmic ( s = 0.1 ) environment. We have set ω0 = 1 , and ωc = 5 
and temperature T = 0.
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schemes. Second, the role of the initial correlation is, in general, vital. Third, with both indirect interaction and 
the initial correlations accounted for, there is a drastic increase in the QFI compared to the use of a single-qubit 
probe. Following the same color scheme and parameters used in Fig. 5, we demonstrate the optimized QFI in 
an Ohmic environment s = 1 as well (see Fig. 6). With this environment, while the QFI is lower than the sub-
Ohmic environment, the benefit of using our two-qubit scheme is still evident. The advantage of our two-qubit 
scheme becomes even more evident with super-Ohmic environments (see Fig. 7). Once again, the QFI generally 
keeps increasing as we increase the interaction time (see the right figure in Fig. 7) for our two-qubit scheme. If 
we compare this with the results obtained using a single-qubit probe with (solid blue curve) or without (magenta 
dashed curve) correlations (see the left plot), we see that the QFI for the single-qubit probe is far smaller.

Estimation of temperature
We now consider the estimation of temperature using a single-qubit probe and our two-qubit scheme. Since 
temperature is not zero here, Ŵcorr(t) and Ŵth(t) are no longer zero. Ŵcorr(t) can be found analytically—its expres-
sion is given in Eq. (8)—while Ŵth(t) and its temperature derivative are found numerically. We illustrate our 
results in Fig. 8 for an Ohmic environment. The key point to note here is that now we do not observe as much 
of an increase in the Fisher information via our two-qubit scheme as we had observed previously. This is simply 
because the indirect interaction �(t) is independent of temperature; as such, we expect the Fisher information 
for the estimation of temperature to not change very significantly if we use our two-qubit scheme rather than a 
single qubit probe. We have checked that this is the case with sub-Ohmic and super-Ohmic environments as well.

Figure 6.   Similar to Fig. 5, we plot the behavior of the optimized QFI versus the coupling strength G. The 
solid black curve shows the optimized QFI with our two-qubit probe scheme if we include the effect of the 
initial correlations; the black asterisks illustrate the QFI with the two-qubit probe scheme but without including 
the effect of the initial correlations. We also show the optimized QFI using a single-qubit probe with (dashed 
magenta curve) and without (the magenta circles) including the effect of the initial correlations. Here we 
consider an Ohmic environment ( s = 1 ). The rest of the parameters are the same as Fig. 5.

Figure 7.   Behavior of the optimized QFI for the estimation of the coupling strength G with a super-Ohmic 
( s = 2 ) environment. The left plot shows the optimized QFI for estimating G with (solid blue curve) and without 
(dashed magenta curve) initial correlations using a single-qubit probe. The right plot shows the optimized QFI 
using our two-qubit scheme, with (solid black curve) and without (dashed red curve) initial correlations (here 
G = 2 ). The inset zooms in on the behavior of the optimized QFI for small values of time. We have set ω0 = 1 , 
with the cutoff frequency ωc = 5 and temperature T = 0.
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Optimal measurement
Until now, we have found that the QFI can be drastically increased by using our two-qubit scheme. The ques-
tion remains regarding which measurements need to be performed to obtain this maximum QFI. This can be 
answered by calculating the classical Fisher information (CFI) for a particular measurement scheme; if the CFI 
comes out to be equal to the QFI, then we have found the optimal measurement to be performed. We guess that 
the optimal measurements are projective measurements described by the projection operators P1 = |�1���1| 
and P2 = |�2���2| , with

Here, ϕ is the usual angle in the Bloch sphere representation. The effect of this measurement is encapsulated 
by the conditional probability P(k|x) of getting measurement result k with k = 1, 2 (corresponding to the post-
measurement states |�1� and |�2� ), and x is the parameter we intend to estimate. For the discrete case, the classical 
Fisher information (CFI) is74

where ∂2x denotes the double derivative with respect to the parameter x that is to be estimated. These probabilities 
are calculated via the usual Born rule. Using the projection operators along with the final state [see Eq. (7)], we 
find that (we have set � = χ + ω0t − ϕ to show a more compact form)

If we disregard the effect of the initial correlations, then this expression reduces to

We aim to maximize the classical Fisher information [see Eq. (17)] over the angle ϕ . If the effect of initial correla-
tions is not included, then it is clear that ϕ = ω0t is the optimal value. In this case, the CFI reduces to the QFI, 
so we have found the optimal measurement. On the other hand, if χ  = 0 , we can show that for

the CFI reduces to the QFI. Again, this means that we have managed to find the optimal measurement. We further 
support these claims by plotting both the QFI and CFI while estimating the environment’s cutoff frequency ωc , 
system-environment coupling strength G and the environment’s temperature T (see Fig. 9), where the overlap 
between the CFI and the QFI shows that we have successfully found the optimal measurements to be performed.

(15)
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1
√
2

{
|+1� + eiϕ |−1�

}
,
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1
√
2

{
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}
.
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(
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)
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(
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Figure 8.   The optimized QFI for estimating temperature. The solid magenta curve (with initial correlations) 
and the magenta diamond markers (without initial correlations) denote the optimized QFI with an Ohmic 
environment (s = 1) and our two-qubit scheme. The dot-dashed blue curve (with initial correlations) and blue 
triangle markers (without initial correlations) show the optimized QFI with a single qubit probe. Here we have 
ω0 = 1 , ωc = 5 and G = 0.5.
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Discussion
In conclusion, we have explored the use of a two-qubit probe scheme to estimate the parameters of a harmonic 
oscillator environment. The key idea is that both qubits of the probe interact with the common environment. 
This common environment induces an indirect interaction between the qubits. The dynamics of only one of these 
qubits then depend sensitively on this indirect interaction on top of the decoherence caused by the environment 
and the effect of the initial system-environment correlations. Consequently, we can expect our two-qubit scheme 
to estimate the environment parameters better than simply using a single-qubit probe. We illustrated that this 
is indeed the case by evaluating the optimal quantum Fisher information. The increase in the quantum Fisher 
information can be unexpectedly dramatic. Our work conclusively shows that two-qubit probes can indeed be 
far more advantageous in estimating the environment parameters than a single-qubit probe.

Methods
Derivation of unitary time‑evolution operator
The total unitary time-evolution operator for the two-qubit probe can be written as U(t) = e−iHSte−iHEtUSE(t) . 
To find the unitary time evolution operator USE(t) corresponding to HSE(t) , we use the Magnus expansion 
USE(t) = exp

{∑∞
i=1 Ai(t)

}
. The integrals A1,A2, . . . are evaluated below. For simplicity, we let J̃z = σ

(1)
z + σ

(2)
z  . 

We first have

with αr(t) = 2gr
ωr

(
1− eiωr t

)
. Now in order to calculate A2 , we first determine the commutator [HSE(t1),HSE(t2)] 

which comes out to be 4i
(
1+ σ

(1)
z σ

(2)
z

)∑
r |gr |2 sin [ωr(t2 − t1)]. Therefore

with �(t) =
∑

r
4|gr |2
ω2
r
[sin(ωr t)− ωr t]. This is simply a c-number, which means that A3 = A4 = A5 = · · · = 0 . 

The expression of the exact unitary time-evolution operator can then be written as
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Figure 9.   Plot of QFI (solid curves) versus the classical Fisher information (asterisk markers). The main plot 
shows the estimation of the coupling strength G with ωc = 5 and temperature T = 0 . We have again plotted 
the optimized Fisher information (quantum and classical) in the insets. On the top right, we estimate the 
temperature T with coupling strength G = 0.5 and cutoff frequency ωc = 5 . At the bottom left, we estimate the 
cutoff frequency with coupling strength G = 0.01 and temperature T = 0.
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Dynamics with factorized initial state
To make further progress, we now assume that the total state is a product state. In other words, we denote the 
initial state of the two qubits comprising the probe as ρS(0) and the total state as ρ(0) = ρS(0)⊗ ρE , where 
ρE = e−βHE

ZE
with ZE = TrE

{
e−βHE

}
. From Eq. (3), we then have

We now simplify TrE
{
ρEe

−Rkl,k′ l′ (t)
}

 . Since the modes of the harmonic oscillator are independent of each other, 
we obtain

where we have defined nr =
〈
b†r br

〉
 . The environment being in thermal equilibrium, nr is simply the Bose-Ein-

stein distribution, that is, nr = 1
eβωr−1

= 1
2

{
coth

(
βωr
2

)
− 1

}
 . Therefore

with Ŵ(t) =
∑

r
4|gr |2
ω2
r
[1− cos (ωr t)] coth

(
βωr
2

)
. To sum up, the final state of the two-qubit probe can be 

written

Dynamics with correlated initial state
We now prepare the initial system-environment state with a projective measurement described by the projection 
operator |ψ��ψ | . The initial joint system-environment state can then be written as

where Z = TrS,E
{
e−βH

}
 is the total partition function. We label the joint eigenstates of σ (1)

z  and σ (2)
z  as |p, q� 

such that σ (1)
z |p, q� = p|p, q� and σ (2)

z |p, q� = q|p, q� with p, q = ±1 . Inserting the completeness relation ∑
p,q |p, q��p, q| = 1 , we find the total partition function to be

Here we have defined the shifted Hamiltonian H(p,q)
E = HE +

(
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. To further simplify 

H
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 . Therefore, the final form 

of the partition function is

Similarly, we can simplify the time-dependent factor Rkl,k′ l′(t) present in Eq. (3) in terms of the displaced har-
monic oscillator modes. We get
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Eq. (3), starting from the initial state in Eq. (6), we note that
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where C =
∑

r
4|gr |2
ωr

 . Using these results, the two-qubit density matrix takes the form

where the initial state [ρS(0)]k′ ,l′;k,l = �k′, l′||ψ��ψ ||k, l� , while

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.

Received: 17 August 2023; Accepted: 13 March 2024

References
	 1.	 Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).
	 2.	 Haroche, S. & Raimond, J.-M. Exploring the Quantum: Atoms, Cavities, and Photons (Oxford University Press, Oxford, 2006).
	 3.	 Schlosshauer, M. Decoherence and the Quantum-to-Classical Transition (Springer, Berlin, 2007).
	 4.	 Breuer, H.-P. & Petruccione, F. The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2007).
	 5.	 Brunelli, M., Olivares, S. & Paris, M. G. Qubit thermometry for micromechanical resonators. Phys. Rev. A 84, 032105 (2011).
	 6.	 Brunelli, M., Olivares, S., Paternostro, M. & Paris, M. G. Qubit-assisted thermometry of a quantum harmonic oscillator. Phys. Rev. 

A 86, 012125 (2012).
	 7.	 Neumann, P. et al. High-precision nanoscale temperature sensing using single defects in diamond. Nano Lett. 13, 2738–2742 

(2013).
	 8.	 Benedetti, C., Buscemi, F., Bordone, P. & Paris, M. G. Quantum probes for the spectral properties of a classical environment. Phys. 

Rev. A 89, 032114 (2014).
	 9.	 Correa, L. A., Mehboudi, M., Adesso, G. & Sanpera, A. Individual quantum probes for optimal thermometry. Phys. Rev. Lett. 114, 

220405 (2015).
	10.	 Elliott, T. J. & Johnson, T. H. Nondestructive probing of means, variances, and correlations of ultracold-atomic-system densities 

via qubit impurities. Phys. Rev. A 93, 043612 (2016).
	11.	 Norris, L. M., Paz-Silva, G. A. & Viola, L. Qubit noise spectroscopy for non-gaussian dephasing environments. Phys. Rev. Lett. 

116, 150503 (2016).
	12.	 Tamascelli, D., Benedetti, C., Olivares, S. & Paris, M. G. Characterization of qubit chains by Feynman probes. Phys. Rev. A 94, 

042129 (2016).
	13.	 Streif, M., Buchleitner, A., Jaksch, D. & Mur-Petit, J. Measuring correlations of cold-atom systems using multiple quantum probes. 

Phys. Rev. A 94, 053634 (2016).
	14.	 Benedetti, C., Sehdaran, F. S., Zandi, M. H. & Paris, M. G. Quantum probes for the cutoff frequency of ohmic environments. Phys. 

Rev. A 97, 012126 (2018).
	15.	 Cosco, F., Borrelli, M., Plastina, F. & Maniscalco, S. Momentum-resolved and correlation spectroscopy using quantum probes. 

Phys. Rev. A 95, 053620 (2017).
	16.	 Sone, A. & Cappellaro, P. Exact dimension estimation of interacting qubit systems assisted by a single quantum probe. Phys. Rev. 

A 96, 062334 (2017).
	17.	 Salari Sehdaran, F., Bina, M., Benedetti, C. & Paris, M. G. Quantum probes for ohmic environments at thermal equilibrium. Entropy 

21, 486 (2019).
	18.	 Razavian, S., Benedetti, C., Bina, M., Akbari-Kourbolagh, Y. & Paris, M. G. Quantum thermometry by single-qubit dephasing. 

Eur. Phys. J. Plus 134, 284 (2019).
	19.	 Gebbia, F. et al. Two-qubit quantum probes for the temperature of an ohmic environment. Phys. Rev. A 101, 032112 (2020).
	20.	 Wu, W. & Shi, C. Quantum parameter estimation in a dissipative environment. Phys. Rev. A 102, 032607 (2020).
	21.	 Tamascelli, D., Benedetti, C., Breuer, H.-P. & Paris, M. G. Quantum probing beyond pure dephasing. New J. Phys. 22, 083027 

(2020).
	22.	 Gianani, I. et al. Discrimination of thermal baths by single-qubit probes. Phys. Rev. Res. 2, 033497 (2020).
	23.	 Helstrom, C. W. Quantum Detection and Estimation Theory (Academic, New York, 1976).
	24.	 Fujiwara, A. Quantum channel identification problem. Phys. Rev. A 63, 042304 (2001).
	25.	 Monras, A. Optimal phase measurements with pure Gaussian states. Phys. Rev. A 73, 033821 (2006).
	26.	 Paris, M. G. Quantum estimation for quantum technology. Int. J. Quantum Inf. 7, 125–137 (2009).
	27.	 Monras, A. & Paris, M. G. Optimal quantum estimation of loss in bosonic channels. Phys. Rev. Lett. 98, 160401 (2007).
	28.	 Genoni, M. G., Olivares, S. & Paris, M. G. Optical phase estimation in the presence of phase diffusion. Phys. Rev. Lett. 106, 153603 

(2011).
	29.	 Spagnolo, N. et al. Phase estimation via quantum interferometry for noisy detectors. Phys. Rev. Lett. 108, 233602 (2012).
	30.	 Pinel, O., Jian, P., Treps, N., Fabre, C. & Braun, D. Quantum parameter estimation using general single-mode Gaussian states. Phys. 

Rev. A 88, 040102 (2013).
	31.	 Chaudhry, A. Z. Utilizing nitrogen-vacancy centers to measure oscillating magnetic fields. Phys. Rev. A 90, 042104 (2014).
	32.	 Chaudhry, A. Z. Detecting the presence of weak magnetic fields using nitrogen-vacancy centers. Phys. Rev. A 91, 062111 (2015).
	33.	 Benedetti, C. & Paris, M. G. Characterization of classical Gaussian processes using quantum probes. Phys. Lett. A 378, 2495–2500 

(2014).
	34.	 Hakim, V. & Ambegaokar, V. Quantum theory of a free particle interacting with a linearly dissipative environment. Phys. Rev. A 

32, 423 (1985).
	35.	 Haake, F. & Reibold, R. Strong damping and low-temperature anomalies for the harmonic oscillator. Phys. Rev. A 32, 2462 (1985).
	36.	 Grabert, H., Schramm, P. & Ingold, G.-L. Quantum Brownian motion: The functional integral approach. Phys. Rep. 168, 115–207 

(1988).
	37.	 Smith, C. M. & Caldeira, A. Application of the generalized Feynman–Vernon approach to a simple system: The damped harmonic 

oscillator. Phys. Rev. A 41, 3103 (1990).

(27)[ρS(t)]k′ ,l′;k,l = [ρS(0)]k′ ,l′;k,lX(t)e
−i

ω0
2 (k

′+l′−k−l)t e−i �(t)
2 (k′l′−kl)e−

1
4 (k+l−k′−l′)

2
Ŵ(t),

X(t) =
∑

p,q e
− βω0

2 (p+q)|�p, q|ψ�|2eβ(p+q)2
C

4 e−i(p+q)�̃(t)

∑
p,q e

− βω0
2 (p+q)|�p, q|ψ�|2eβ(p+q)2

C

4

.



12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:6803  | https://doi.org/10.1038/s41598-024-57150-7

www.nature.com/scientificreports/

	38.	 Karrlein, R. & Grabert, H. Exact time evolution and master equations for the damped harmonic oscillator. Phys. Rev. E 55, 153 
(1997).

	39.	 Romero, L. D. & Paz, J. P. Decoherence and initial correlations in quantum Brownian motion. Phys. Rev. A 55, 4070 (1997).
	40.	 Lutz, E. Effect of initial correlations on short-time decoherence. Phys. Rev. A 67, 022109 (2003).
	41.	 Banerjee, S. & Ghosh, R. General quantum Brownian motion with initially correlated and nonlinearly coupled environment. Phys. 

Rev. E 67, 056120 (2003).
	42.	 Van Kampen, N. A new approach to noise in quantum mechanics. J. Stat. Phys. 115, 1057–1072 (2004).
	43.	 Ban, M. Quantum master equation for dephasing of a two-level system with an initial correlation. Phys. Rev. A 80, 064103 (2009).
	44.	 Campisi, M., Talkner, P. & Hänggi, P. Fluctuation theorem for arbitrary open quantum systems. Phys. Rev. Lett. 102, 210401 (2009).
	45.	 Uchiyama, C. & Aihara, M. Role of initial quantum correlation in transient linear response. Phys. Rev. A 82, 044104 (2010).
	46.	 Dijkstra, A. G. & Tanimura, Y. Non-Markovian entanglement dynamics in the presence of system-bath coherence. Phys. Rev. Lett. 

104, 250401 (2010).
	47.	 Smirne, A., Breuer, H.-P., Piilo, J. & Vacchini, B. Initial correlations in open-systems dynamics: The Jaynes–Cummings model. 

Phys. Rev. A 82, 062114 (2010).
	48.	 Dajka, J. & Łuczka, J. Distance growth of quantum states due to initial system-environment correlations. Phys. Rev. A 82, 012341 

(2010).
	49.	 Zhang, Y.-J., Zou, X.-B., Xia, Y.-J. & Guo, G.-C. Different entanglement dynamical behaviors due to initial system-environment 

correlations. Phys. Rev. A 82, 022108 (2010).
	50.	 Tan, H.-T. & Zhang, W.-M. Non-Markovian dynamics of an open quantum system with initial system-reservoir correlations: A 

nanocavity coupled to a coupled-resonator optical waveguide. Phys. Rev. A 83, 032102 (2011).
	51.	 Lee, C. K., Cao, J. & Gong, J. Noncanonical statistics of a spin-boson model: Theory and exact Monte Carlo simulations. Phys. Rev. 

E 86, 021109 (2012).
	52.	 Morozov, V., Mathey, S. & Röpke, G. Decoherence in an exactly solvable qubit model with initial qubit-environment correlations. 

Phys. Rev. A 85, 022101 (2012).
	53.	 Semin, V., Sinayskiy, I. & Petruccione, F. Initial correlation in a system of a spin coupled to a spin bath through an intermediate 

spin. Phys. Rev. A 86, 062114 (2012).
	54.	 Chaudhry, A. Z. & Gong, J. Amplification and suppression of system-bath-correlation effects in an open many-body system. Phys. 

Rev. A 87, 012129 (2013).
	55.	 Reina, J. H., Susa, C. E. & Fanchini, F. F. Extracting information from qubit-environment correlations. Sci. Rep. 4, 7443 (2014).
	56.	 Chaudhry, A. Z. & Gong, J. Role of initial system-environment correlations: A master equation approach. Phys. Rev. A 88, 052107 

(2013).
	57.	 Chaudhry, A. Z. & Gong, J. The effect of state preparation in a many-body system. Can. J. Chem. 92, 119–127 (2014).
	58.	 Zhang, Y.-J., Han, W., Xia, Y.-J., Yu, Y.-M. & Fan, H. Role of initial system-bath correlation on coherence trapping. Sci. Rep. 5, 

13359 (2015).
	59.	 Chen, C.-C. & Goan, H.-S. Effects of initial system-environment correlations on open-quantum-system dynamics and state prepa-

ration. Phys. Rev. A 93, 032113 (2016).
	60.	 Chaudhry, A. Z. A general framework for the quantum Zeno and anti-Zeno effects. Sci. Rep. 6, 29497 (2016).
	61.	 De Vega, I. & Alonso, D. Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017).
	62.	 Kitajima, S., Ban, M. & Shibata, F. Expansion formulas for quantum master equations including initial correlation. J. Phys. A Math. 

Theor. 50, 125303 (2017).
	63.	 Buser, M., Cerrillo, J., Schaller, G. & Cao, J. Initial system-environment correlations via the transfer-tensor method. Phys. Rev. A 

96, 062122 (2017).
	64.	 Majeed, M. & Chaudhry, A. Z. Effect of initial system-environment correlations with spin environments. Eur. J. Phys. D 73, 16 

(2019).
	65.	 Mirza, A. R., Zia, M. & Chaudhry, A. Z. Master equation incorporating the system-environment correlations present in the joint 

equilibrium state. Phys. Rev. A 104, 042205 (2021).
	66.	 Ather, H. & Chaudhry, A. Z. Improving the estimation of environment parameters via initial probe-environment correlations. 

Phys. Rev. A 104, 012211 (2021).
	67.	 Tan, D. Y., Chaudhry, A. Z. & Gong, J. Optimization of the environment for generating entanglement and spin squeezing. J. Phys. 

B At. Mol. Opt. Phys. 48, 115505 (2015).
	68.	 Oh, S. & Kim, J. Entanglement between qubits induced by a common environment with a gap. Phys. Rev. A 73, 062306 (2006).
	69.	 Benatti, F., Ferialdi, L. & Marcantoni, S. Qubit entanglement generation by Gaussian non-Markovian dynamics. J. Phys. A Math. 

Theor. 52, 035305 (2019).
	70.	 Hartmann, R. & Strunz, W. T. Environmentally induced entanglement—Anomalous behavior in the adiabatic regime. Quantum 

4, 347 (2020).
	71.	 Cattaneo, M., Giorgi, G. L., Maniscalco, S., Paraoanu, G. S. & Zambrini, R. Bath-induced collective phenomena on superconducting 

qubits: Synchronization, subradiance, and entanglement generation. Ann. Phys. (Berlin) 533, 2100038 (2021).
	72.	 Nourmandipour, A., Vafafard, A., Mortezapour, A. & Franzosi, R. Entanglement protection of classically driven qubits in a lossy 

cavity. Sci. Rep. 11, 16259 (2021).
	73.	 Jacobs, K. Quantum Measurement Theory and Its Applications (Cambridge University Press, Cambridge, 2014).
	74.	 Hall, M. J. Quantum properties of classical fisher information. Phys. Rev. A 62, 012107 (2000).

Author contributions
A.Z.C. came up with the basic idea behind this work. A.R.M. carried out the calculations and plotted the graphs. 
Both A.Z.C. and A.R.M. checked the results and contributed to the writing of the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to A.Z.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

www.nature.com/reprints


13

Vol.:(0123456789)

Scientific Reports |         (2024) 14:6803  | https://doi.org/10.1038/s41598-024-57150-7

www.nature.com/scientificreports/

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

http://creativecommons.org/licenses/by/4.0/

	Improving the estimation of environment parameters via a two-qubit scheme
	Results
	The model and its dynamics
	The quantum Fisher information
	Estimation of the cutoff frequency of the environment
	Estimation of the system-environment coupling strength
	Estimation of temperature
	Optimal measurement

	Discussion
	Methods
	Derivation of unitary time-evolution operator
	Dynamics with factorized initial state
	Dynamics with correlated initial state

	References


